首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolation from mammalian predators differentially affects two congeners   总被引:8,自引:2,他引:6  
Evolutionary isolation from predators can profoundly influencethe morphology, physiology, and behavior of prey, but littleis known about how species respond to the loss of only someof their predators. We studied antipredator behavior of tammarwallabies (Macropus eugenii) and western gray kangaroos (Macropusfuliginosus) on Kangaroo Island (KI), South Australia, andat Tutanning Nature Reserve on the mainland of western Australia.Both species on KI have been isolated from native mammalian predators for several thousand years. On KI, wallabies (becauseof their size) are vulnerable to diurnal aerial predators.In contrast, on the mainland both species have been exposedcontinuously to native and introduced mammalian and avian predators.At both locations, wallabies modified the amount of time they allocated to vigilance and foraging in response to group size,whereas kangaroos did so only at the higher risk Tutanningsite. Both species modified overall time budgets (they werewarier at the higher risk site), and both species modifiedspace-use patterns as a function of risk. At the higher risk site, tammars were closer to cover, whereas kangaroos were,on average, farther from cover. We hypothesize that the presenceof a single predator, even if it is active at a different timeof day, may profoundly affect the way a species responds tothe loss of other predators by maintaining certain antipredatorbehaviors. Such an effect of ancestral predators may be expected as long as species encounter some predators.  相似文献   

2.
It is often essential to understand historical selection regimes to explain current traits. We studied antipredator behavior of three Tasmanian macropodid marsupials – Forester kangaroos Macropus giganteus , Bennett's wallabies M. rufogriseus , and Tasmanian pademelons Thylogale billardierii – to understand how antipredator behavior functions in a relatively intact predator community. We also compared behavior of the kangaroos and wallabies on a predator-free island where they were translocated from mainland Tasmania 30 yr ago. Both species allowed humans to get closer to them on the predator-free island; a finding consistent with a reduced risk of predation on the island. Neither kangaroos, nor wallabies, exhibited group size effects – they did not modify time allocated to foraging or antipredator vigilance as a function of group size at either site. Nor did overall time allocation vary in any consistent way. In contrast, mainland Australian sibling-species of Forester kangaroos and Bennett's wallabies have both been reported to have group size effects. It is possible either that the extinction of the thylacine Thylacinus cynocephalus in the last century has led to an evolutionary loss of group size effects and other antipredator behavior, or that thylacines were never that important a predator on Tasmanian subspecies. In contrast, Tasmanian pademelons studied on the Tasmanian mainland modified time allocation as a function of group size suggesting that they perceived safety in numbers. Pademelons, because of their body size, are relatively more vulnerable than larger-bodied macropodids to the rich community of marsupial carnivores in Tasmania, and used a mix of social and individual strategies to manage predation risk.  相似文献   

3.
Isolation from predators can lead to the reduction or loss of ancestral behavioral defenses in prey, but does not always do so. Predators introduced to populations that have experienced relaxed selection from some ancestral predators can favor the evolution of antipredator behavior that has been lost. We examined these possibilities by eliciting antipredator behavior in three populations of threespine stickleback fish, Gasterosteus aculeatus : an oceanic population thought to resemble the ancestral form, and two populations historically (up to 20 000 yr) devoid of piscine predators (relaxed selection), one of which has been stocked with salmonids for nearly 25 yr (reversed selection). We used three kinds of predator models: a sculpin (ambush predator), a rainbow trout (chasing predator), and an overhead silhouette of an arctic tern. Stickleback reacted differently to the three models, indicating that they distinguished among them. Individuals from all populations responded similarly to the tern model. The ancestral population showed the weakest response to the sculpin model despite being the only population that encounters these predators naturally. Stickleback from the trout-free population displayed slightly reduced responses to the trout model, and recovery times like those in the ancestral population providing only weak evidence for loss of the ancestral antipredator repertoire. Fish from the reverse-selected population exhibited fascinating, elevated responses to both the trout and sculpin models relative to the other two populations. These findings offer initial evidence of (1) a partial alteration of the ancestral behavioral repertoire during a long period of relaxed selection from piscine predators, and (2) rapid acquisition of extreme responses to piscine predators under reverse selection.  相似文献   

4.
The high impact of predators on breeding success has favored the evolution of diverse behavioral strategies that enhance both individual survivorship and reproductive success. Self‐ and nest‐defense against predators are inter‐related behaviors that vary according to life history traits and the risks involved in defense. In addition, interpopulation differences in the composition of predator guilds, and hence predation pressures, may result in geographic variation in antipredator defense strategies. It is generally accepted that the absence of predators could drive the loss of antipredator behavior. However, it is unclear how species respond if one type of predator (e.g., a specialized nest predator) is absent but others are present. The multipredator hypothesis suggests that the absence of only a few predators is not sufficient to drive a change or loss of antipredator behavior in a species. We examined interpopulation variation in defense behavior in the thorn‐tailed rayadito (Aphrastura spinicauda), a suboscine bird inhabiting a wide latitudinal range in southern South America. In populations where nest predators were either present or absent, we examined the responses of rayaditos to an adult predator (an owl) and to a nest predator (a marsupial). Owl‐defense behavior involved more intense and longer responses than marsupial‐defense. This suggests that adult rayaditos may allocate more energy to defend themselves than their young. However, because the presence of adult predators near the nest also prevents parents from feeding the nestlings, owl‐defense may simultaneously represent a form of nest‐defense. No differences in marsupial‐defense were found among the three sampled populations, despite the absence of native mammalian nest predators in one population. The lack of variation in nest‐defense behavior provides some support for the multipredator hypothesis, although the high interpopulation gene flow in this species could also contribute to this behavior's maintenance.  相似文献   

5.
Introduced mammalian predators may pose a high risk for native and naïve prey populations, but little is known about how native fish species may recognize and respond to scents from introduced mammalian predators. We investigated the role of diet‐released chemical cues in facilitating predator recognition, hypothesizing that native brown trout (Salmo trutta) would exhibit antipredator behaviours to faeces scents from the introduced American mink (Neovision vison) fed conspecifics, but not to non‐trout diets. In treatments‐control and replicate stream tank experiments, brown trout showed significant antipredator responses to faeces scent from mink fed conspecifics, but not to faeces scent from mink fed a non‐trout diet (chicken), or the non‐predator food control, Eurasian beaver (Castor fiber). We conclude that native and naïve brown trout show relevant antipredator behaviours to an introduced mammalian predator, presumably based on diet‐released conspecific alarm cues and thereby estimate the predation risk.  相似文献   

6.
The strong impact of non‐native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non‐native predators found in the Everglades, the African jewelfish, Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer‐established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free‐ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish‐savvy and jewelfish‐naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non‐native predator archetypes are similar enough to those of native predators, if prey rely on general antipredator responses or predation cues, and/or show neophobic responses.  相似文献   

7.
Translocation of endangered species to habitats where exotic predators have been removed is now a common conservation practice around the world. Many of these translocated populations have thrived, and they are often used as sources for the harvesting of individuals for translocations to sites where exotic predators still exist, albeit at reduced densities. This study investigates how isolation from exotic predators affects the ability of individuals to recognize such predators using the North Island robin (Petroica longipes) as a model. The study was carried out in three robin populations in the North Island, New Zealand: a translocated population on Tiritiri Matangi Island, where exotic mammalian predators are absent; a population reintroduced from Tiritiri Matangi Island to Wenderholm Regional Park, a mainland site where these mammals are controlled to low densities; and a mainland population at Benneydale where exotic predatory mammals are common. The response intensity of robins to a model stoat was high at Benneydale and low at Tiritiri Matangi and Wenderholm. This result indicates that isolation from mammalian predators on Tiritiri Matangi has suppressed the ability of North Island robins to recognize these predators. It is possible that the low predatory mammal densities at Wenderholm have reduced robin contact with stoats, therefore reduced the opportunity for robins to learn to recognize stoats. Thus, translocation of individuals from populations without predators to places where key predators still exist could be unsuccessful if translocated individuals fail to perform appropriate anti‐predator behaviours.  相似文献   

8.
Invasive species capable of recognizing potential predators may have increased establishment rates in novel environments. Individuals may retain historical predator recognition and invoke innate responses in the presence of taxonomically or ecologically similar predators, generalize antipredator responses, or learn to avoid risky species in novel environments. Invasive amphibians in aquatic environments often use chemical cues to assess predation risk and learn to avoid novel predators via direct experience and/or associated chemical cues. Ontogeny may also influence recognition; experience with predators may need to occur at certain developmental stages for individuals to respond correctly. We tested predator recognition in invasive American bullfrog ( Lithobates catesbeianus) tadpoles that varied in experience with fish predators at the population and individual scale. We found that bullfrog tadpoles responded to a historical predator, largemouth bass ( Micropterus salmoides), only if the population was locally sympatric with largemouth bass. Individuals from a population that did not co‐occur with largemouth bass did not increase refuge use in response to either largemouth bass chemical cues alone or chemical cues with diet cues (largemouth bass fed bullfrog tadpoles). To test whether this behavioral response was generalized across fish predators, we exposed tadpoles to rainbow trout ( Oncorhynchus mykiss) and found that tadpoles could not recognize this novel predator regardless of co‐occurrence with other fish species. These results suggest that environment may be more important for predator recognition than evolutionary history for this invasive species, and individuals do not retain predator recognition or generalize across fish predators.  相似文献   

9.
1. Non‐native predators might inflict proportionally higher mortality on prey that have no previous experience of them, compared to species that have coexisted with the predator for some time. 2. We tested whether juvenile Chinook salmon (Oncorhynchus tshawytscha) were less able to recognise a non‐native than a native predator, by investigating behavioural responses to the chemical cues of the invasive smallmouth bass (Micropterus dolomieu) and the native northern pikeminnow (Ptychocheilus oregonensis) in both laboratory and field experiments. 3. Laboratory results demonstrated strong innate antipredator responses of individual juvenile Chinook salmon to northern pikeminnow; fish spent 70% of time motionless and exhibited 100% greater panic response than in controls. By contrast, antipredator responses to the chemical cues of smallmouth bass did not differ from controls. 4. These results were supported by similar differences in recognition of these predator odours by groups of juvenile Chinook salmon in fully natural conditions, though responses reflected a greater range of antipredator behaviours by individuals. In field trials, responses to northern pikeminnow odour resulted in increased flight or absence, reductions in swimming and foraging, and increased time spent near the substratum, compared to smallmouth bass odour. 5. Given that survival of juvenile fish is facilitated by predator recognition, our results support the hypothesis that naivety may be an important factor determining the effect of non‐native predators on prey populations. Efforts to manage the effect of native and non‐native predators may benefit by considering complex behavioural interactions, such as these at the individual and group levels.  相似文献   

10.
Predators unintentionally release chemical and other cues into their environment that can be used by prey to assess predator presence. Prey organisms can therefore perform specific antipredator behavior to reduce predation risk, which can strongly shape the outcome of trophic interactions. In contrast to aquatic systems, studies on cue‐driven antipredator behavior in terrestrial arthropods cover only few species to date. Here, we investigated occurrence and strength of antipredator behavior of the wood cricket Nemobius sylvestris toward cues of 14 syntopic spider species that are potential predators of wood crickets. We used two different behavioral arena experiments to investigate the influence of predator cues on wood cricket mobility. We further tested whether changes in wood cricket mobility can be explained by five predator‐specific traits: hunting mode, commonness, diurnal activity, predator–prey body–size ratio, and predator–prey life stage differences. Crickets were singly recorded (1) in separate arenas, either in presence or absence of spider cues, to analyze changes in mobility on filter paper covered with cues compared with normal mobility on filter paper without cues; and (2) in subdivided arenas partly covered with spider cues, where the crickets could choose between cue‐bearing and cue‐less areas to analyze differences in residence time and mobility when crickets are able to avoid cues. Crickets either increased or reduced their mobility in the presence of spider cues. In the experiments with cues and controls in separate arenas, the magnitude of behavioral change increased significantly with increasing predator–prey body size ratio. When crickets could choose between spider cues and control, their mobility was significantly higher in the presence of cues from common spider species than from rare spiders. We therefore conclude that wood crickets distinguish between cues from different predator species and that spiders unintentionally release a species‐specific composition and size‐dependent quantity of cues, which lead to distinct antipredator behavior in wood crickets.  相似文献   

11.
The introduction of predator species into new habitats is an increasingly common consequence of human activities, and the persistence of native prey species depends upon their response to these novel predators. In this study, we examined whether the Largespring mosquitofish, Gambusia geiseri exhibited antipredator behavior and/or an elevation of circulating stress hormones (cortisol) to visual and chemical cues from a native predator, a novel predator, or a non‐predatory control fish. Prey showed the most pronounced antipredator response to the native predator treatment, by moving away from the stimulus, while the prey showed no significant changes in their vertical or horizontal position in response to the novel or non‐predator treatments. We also found no significant difference in water‐borne cortisol release rates following any of the treatments. Our results suggest the prey did not recognize and exhibit antipredator behavior to the novel predator, and we infer that this predator species could be detrimental if it expands into the range of this prey species. Further, our study demonstrates prey may not respond to an invasive predator that is phylogenetically, behaviorally, and morphologically dissimilar from the prey species' native predators.  相似文献   

12.
Naiveté in prey arises from novel ecological mismatches in cue recognition systems and antipredator responses following the arrival of alien predators. The multilevel naiveté framework suggests that animals can progress through levels of naiveté toward predator awareness. Alternatively, native prey may be preadapted to recognize novel predators via common constituents in predator odors or familiar predator archetypes. We tested predictions of these competing hypotheses on the mechanisms driving behavioral responses of native species to alien predators by measuring responses of native free‐living northern brown bandicoots (Isoodon macrourus) to alien red fox (Vulpes vulpes) odor. We compared multiple bandicoot populations either sympatric or allopatric with foxes. Bandicoots sympatric with foxes showed recognition and appropriate antipredator behavior toward fox odor via avoidance. On the few occasions bandicoots did visit, their vigilance significantly increased, and their foraging decreased. In contrast, bandicoots allopatric with foxes showed no recognition of this predator cue. Our results suggest that vulnerable Australian mammals were likely naïve to foxes when they first arrived, which explains why so many native mammals declined soon after fox arrival. Our results also suggest such naiveté can be overcome within a relatively short time frame, driven by experience with predators, thus supporting the multilevel naiveté framework.  相似文献   

13.
We studied the way in which a population of tammar wallabies(Macropus eugenii), which have been isolated from mammalianpredators since the last ice age, responded to the sight andsound of historical and ontogenetically and evolutionarilynovel predators. Tammars were shown a range of visual stimuli,including taxidermic mounts of two evolutionarily novel predators,a red fox (Vulpes vulpes) and a cat (Felis catus), and a modelof an extinct predator, the thylacine (Thylacinus cynocephalus).Controls were a conspecific, the cart on which all mounts werepresented, and blank trials in which spontaneous change in behaviorwas measured. We played back recorded sounds to characterizeresponses to acoustic cues from predators and to a putativeconspecific antipredator signal. Treatments included the howlsof dingoes (Canis lupus dingo), an evolutionarily novel predator;calls of a wedge-tailed eagle (Aquila audax), a historicaland current predator; and wallaby foot thumps. Controls werethe song of an Australian magpie (Gymnorhina tibicen) and ablank trial. After seeing a fox, wallabies thumped their hindfeet in alarm, suppressed foraging, and increased looking.The sight of a cat similarly suppressed foraging and increasedlooking. The sounds of predators did not influence responsiveness,but wallabies foraged less and looked more after thump playbacks.Our results suggest that tammars respond to the sight, butnot the sounds, of predators. In contrast, the response to footthumps demonstrates that this particular sound functions asan antipredator signal. We suggest that responsiveness to visualcues has been preserved under relaxed selection because predatormorphology is convergent, but vocalizations are not.  相似文献   

14.
The introduction of mammalian predators to oceanic islands has led to dramatic declines in the abundance of many native species. Conservation management of these species often relies on low‐cost predator control techniques that can be implemented over large scales. Assessing the effectiveness of such management techniques is difficult, but using population viability analyses (PVA), which identify the population growth rate (λ) and extinction risk of threatened species, may offer a solution. PVA provide the opportunity to compare the relative effectiveness of various management options and can identify knowledge gaps to prioritize research efforts. We used PVA to assess the population viability of whio (Hymenolaimus malacorhynchos), a rare riverine duck endemic to New Zealand. Current populations are threatened by introduced mammalian predators and are rapidly declining in both distribution and abundance. Whio conservation management is dominated by large‐scale, low‐intensity predator control, targeting introduced stoats (Mustela erminea). There is evidence that such control increases whio productivity but it is unknown if this increase is sufficient for long‐term population persistence. We undertook a stochastic PVA to assess the viability of whio populations under different management scenarios using data obtained from a 6‐year study of whio demographic responses to predator control. Populations with no predator control and low productivity will rapidly decline to extinction. Increasing productivity through predator control increased population viability but populations still showed a declining trajectory. A perturbation analysis showed that the growth rate of whio populations was largely driven by adult survival. Therefore, future research should target obtaining more robust estimates of adult survival, particularly how it is affected by predator control. Overall, our analysis indicated that large‐scale predator control increases the short‐term viability of whio populations but is insufficient for long‐term population persistence.  相似文献   

15.
Little is known about how predator recognition develops under natural conditions. Predispositions to respond to some stimuli preferentially are likely to interact with the effects of experience. Convergent evidence from several studies suggests that predator-nai;ve tammar wallabies (Macropus eugenii) have some ability to respond to vertebrate predators differently from non-predators and that antipredator responses can be selectively enhanced by experience. Here, we examined the effects of differential reinforcement on responses to a model fox (Vulpes vulpes), cat (Felis catus) and conspecific wallaby. During training, tammars experienced paired presentations of a model fox and a simulated capture, as well as presentations of a wallaby and a cat alone. Training enhanced responses to the fox, relative to the conspecific wallaby, but acquired responses to the two predators did not differ, despite repeated, non-reinforced presentations of the cat. Results suggest that experience interacts with the wallabies' ability to perceive predators as a natural category.  相似文献   

16.
Efforts to eradicate multiple mammal pests from offshore islands and fenced mainland ‘habitat islands’ often fail to remove mice, and such failures can result in a dramatic change in the food‐web whereby the removal of larger mammal pests facilitates a population explosion of mice through predator and competitor release. We investigated the ecological responses of house mice to the removal of mammalian predators from a 500‐ha fenced sanctuary at Tawharanui, northern New Zealand. Data on population structure and body condition of mice trapped in 2007, in four habitat types within the sanctuary, were compared with baseline data collected in 2001, before mammal control operations commenced. We hypothesized that: (i) in the absence of mammalian predators mouse densities would increase in all habitat types that provide vegetation cover, and (ii) in the absence of mammalian competitors mice would become heavier due to greater access to food resources. Mouse densities were significantly higher in 2007 than in 2001 in three habitat types. The high density of mice in forest – where none were trapped prior to control – suggests a competitive release, in which mice profited from the removal of ship rats. No mice were caught in the presence of ship rats on a forest trap‐line at a control site outside the sanctuary. Mice trapped in 2007 were significantly heavier than those trapped in 2001, and significantly heavier than mice trapped at the control site. Greater access to food in the absence of competing and predatory mammals probably explains the heavier body weight of Tawharanui mice. There has been a significant change in the mammalian food‐web at Tawharanui, such that the house mouse is now the primary pest. A rapid and dramatic increase in mouse numbers is likely to adversely impact invertebrates and seedling recruitment, which in turn could affect ecosystem functions.  相似文献   

17.
Despite the importance of predator recognition in mediating predator-prey interactions, we know little about the specific characteristics that prey use to distinguish predators from non-predators. Recent experiments indicate that some prey who do not innately recognize specific predators as threats have the ability to display antipredator responses upon their first encounter with those predators if they are similar to predators that the prey has recently learned to recognize. The purpose of our present experiment is to test whether this generalization of predator recognition is dependent on the level of risk associated with the known predator. We conditioned fathead minnows to chemically recognize brown trout either as a high or low threat and then tested the minnows for their responses to brown trout, rainbow trout (closely related predator) or yellow perch (distantly related predator). When the brown trout represents a high-risk predator, minnows show an antipredator response to the odour of brown trout and rainbow trout but not to yellow perch. However, when the brown trout represents a low-risk predator, minnows display antipredator responses to brown trout, but not to the rainbow trout or yellow perch. We discuss these results in the context of the Predator Recognition Continuum Hypothesis.  相似文献   

18.
Island populations may provide unique insights into the evolution and persistence of antipredator behavior. If antipredator behavior is costly and islands have reduced predation risk, then we expect the reduction or loss of antipredator behavior on islands. However, if even a single predator remains, the multipredator hypothesis predicts that antipredator behaviors will be conserved. We compared the flight initiation distances (FID) of California quail (Callipepla californica) on Santa Catalina Island (a location with reduced predation pressure) with quail on the mainland. We found no differences in FID between mainland and island quail. However, despite employing consistent testing methods, the starting distance from which quail were approached was significantly reduced for quail studied on the island when compared with quail studied on the mainland. Our results are consistent with the multipredator hypothesis because, while the island population had substantially fewer predators, some predators remained and some antipredator behavior persisted.  相似文献   

19.
When a previously common predator disappears owing to local extinction, the strong source of natural selection on prey to visually recognize that predator becomes relaxed. At present, we do not know the extent to which recognition of a specific predator is generalized to similar looking predators or how a specific predator-recognition cue, such as coat pattern, degrades under prolonged relaxed selection. Using predator models, we show that deer exhibit a more rapid and stronger antipredator response to their current predator, the puma, than to a leopard displaying primitive rosettes similar to a locally extinct predator, an early jaguar. Presentation of a novel tiger with a striped coat engendered an intermediate speed of predator recognition and strength of antipredator behaviour. Responses to the leopard model slightly exceeded responses to a non-threatening deer model, suggesting that thousands of years of relaxed selection have led to the loss of recognition of the spotted coat as a jaguar-recognition cue, and that the spotted coat has regained its ability to camouflage the felid form. Our results shed light on the evolutionary arms race between adoption of camouflage to facilitate hunting and the ability of prey to quickly recognize predators by their formerly camouflaging patterns.  相似文献   

20.
Neonate‐directed care is rare in non‐avian reptiles, but female pitvipers attend their young for a period of time after birth. One of the primary functions of parental care is the protection of offspring from predators, and parents of diverse taxa are able to modulate their antipredator behavior in the presence of offspring. To test the hypothesis that the antipredator behavior of post‐parturient pitvipers is altered during neonate attendance, we conducted behavioral trials on female cottonmouths (Agkistrodon piscivorus) in which we measured female response to a simulated predator encounter. Cottonmouths were divided into three treatment groups: (1) post‐parturient, attending neonates; (2) post‐parturient, not attending neonates; and (3) non‐reproductive. All females were subjected to a second trial approximately 3 wk later, when females in Group 1 were no longer attending neonates. When mothers were attending offspring, they were more hesitant to engage the predator and exhibited more warning than aggressive behaviors once they did, relative to non‐attending and non‐reproductive females. When these same mothers were no longer attending offspring, they significantly increased their antipredator behavior by engaging the predator quickly and displaying more aggressive than warning behaviors. This change in behavior was not observed in post‐parturient females who did not have neonates present during either trial, nor was it observed in non‐reproductive females, indicating that the presence of neonates directly affected the antipredator behavior of attending females. We discuss hypotheses concerning the possible adaptive value of reduced antipredator behavior in female pitvipers attending neonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号