首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Isolated brush border membrane vesicles, basolateral membrane vesicles, and cultured renal epithelial cells provide good material for studying transport systems. 2. The vesicle systems have been used to study the transport of labeled phosphate, sodium/phosphate cotransport, sodium/sulfate cotransport, basolateral transport of sulfate and basolateral transport of phosphate via anion exchange. 3. Cultured renal cells show sodium/phosphate cotransport and parathyroid dependent inhibition of phosphate transport.  相似文献   

2.
Basolateral membrane vesicles made from rabbit kidney proximal tubules were frozen and irradiated with a high energy electron beam and the effects of irradiation on Na,K-ATPase activity, p-aminohippurate (PAH) transport, the membrane diffusion barrier and vesicle volume were measured. The vesicle volume and diffusion barrier were not significantly changed by radiation exposure. Na,K-ATPase activity was inactivated as a simple exponential function of radiation dose. Target size analysis of the data yielded a molecular size of 267 +/- 17 kDa, consistent with its existence as a (alpha beta)2 dimer. The carrier-mediated PAH uptake by basolateral membrane vesicles was also inactivated as a function of radiation dose. A target molecular size of 74 +/- 16 kDa was calculated for the PAH transport system. This study is the first measurement of the functional size of the organic acid transport system based directly on flux measurements.  相似文献   

3.
Organic anions are secreted into urine via organic anion transporters across the renal basolateral and apical membranes. However, no apical membrane transporter for organic anions such as p-aminohippuric acid (PAH) has yet been identified. In the present study, we showed that human NPT1, which is present in renal apical membrane, mediates the transport of PAH. The K(m) value for PAH uptake was 2.66 mM and the uptake was chloride ion sensitive. These results are compatible with those reported for the classical organic anion transport system at the renal apical membrane. PAH transport was inhibited by various anionic compounds. Human NPT1 also accepted uric acid, benzylpenicillin, faropenem, and estradiol-17beta-glucuronide as substrates. Considering its chloride ion sensitivity, Npt1 is expected to function for secretion of PAH from renal proximal tubular cells. This is the first molecular demonstration of an organic anion transport function for PAH at the renal apical membrane.  相似文献   

4.
Freeze-fracture studies of the lamprey gill epithelium reveal structural differences of the luminal and basolateral plasma membrane of the pavement cells. The luminal membrane is characterized by only a few intramembrane particles on the P face and numerous large (10-13 nm) particles on the E face, whereas the basolateral membrane shows the majority of intramembrane particles (6-8 nm) on the P face. The structural specialization of the luminal membrane and the differences between the luminal and basolateral membranes of the pavement cell are similar to those previously demonstrated for the unstimulated granular cell of the amphibian urinary bladder. Because of this similarity, it is suggested that the 2 cell types are analogous and that the luminal membrane of the pavement cell in the lamprey gill epithelium is functionally characterized by a low water permeability. A possible role of sodium uptake by the pavement cells from freshwater and putative differences of osmoregulatory mechanisms in the gills of lampreys and teleosts in freshwater environments are discussed.  相似文献   

5.
The four different renal cell types in the cortical segments beyond the macula densa--distal convoluted tubule (DCT) cell, the connecting tubule (CNT) cell, the principal (P) cell, and the intercalated (I) cell--each respond to prolonged specific stimuli with changes in cell membrane area. Increases in basolateral cell membrane area, reflecting the transport capacity of the cell, are associated in DCT cells with luminal, chronically high sodium load, in CNT cells with mineralocorticoids and tubular solute load, and in P cells with mineralocorticoids. In I cells the luminal cell membrane area seems to be influenced by the local luminal environment of the cells as well as by the peritubular environment. These structural findings indicate that tubular fluid composition as well as peritubular factors (e.g., mineralocorticoid levels) may have a role in regulating the transport capacity of distal cell types in the kidney.  相似文献   

6.
The effects of S-(2-chloroethyl)-DL-cysteine (CEC) (a potent nephrotoxin) on the transport of p-aminohippurate ion (PAH) in renal plasma membrane vesicles isolated from rat renal cortex were studied in vitro. The uptake of PAH was significantly reduced in a dose-dependent manner in both the brush border membrane (BBM) and basolateral membrane (BLM) vesicles. These results demonstrate that CEC is capable of interfering with the accumulation of PAH (a model organic anion for renal tubular transport system) by both energy-independent and energy-dependent carrier-mediated transport processes. Probenecid, a typical inhibitor of the organic anion transport system, showed the highest inhibition of PAH uptake in both the membranes vesicles. These data indirectly suggest that transport by renal tubular cells may result in the accumulation of CEC in renal cellular organelles eventually in toxic concentrations. Thus, CEC showed both dose- and time-dependent inhibition of the activities of gamma-glutamyl transferase (a BBM marker enzyme) and Na+, K(+)-ATPase (a BLM marker enzyme), while no such inhibition was noticed with probenecid. Pretreatment with probenecid prevented the inhibition of the gamma-glutamyl transferase activity due to CEC in BBM, but failed to do so for the Na+,K(+)-ATPase activity in BLM vesicles. Thus, the data suggest that the inhibition of the activities of these membrane-specific enzymes by CEC could lead to the initial development of its nephrotoxicity.  相似文献   

7.
A major system for net transepithelial secretion of a wide range of hydrophobic organic anions (OAs) exists in the proximal renal tubules of almost all vertebrates. This process involves transport into the cells against an electrochemical gradient at the basolateral membrane and movement from the cells into the lumen down an electrochemical gradient. Transport into the cells at the basolateral membrane, which is the dominant, rate-limiting step, is a tertiary active transport process, the final step which involves countertransport of the OA into the cells against its electrochemical gradient in exchange for alpha-ketoglutarate moving out of the cells down its electrochemical gradient. The outwardly directed gradient for alpha-ketoglutarate is maintained by metabolism ( approximately 40%) and by transport into the cells across both the basolateral and luminal membranes by separate sodium-dicarboxylate cotransporters ( approximately 60%). The inwardly directed sodium gradient driving alpha-ketoglutarate uptake is maintained by the basolateral Na(+)-K(+)-ATPase, the primary energy-requiring transport step in the total tertiary process. The basolateral OA/alpha-ketoglutarate exchange process now appears to be physiologically regulated by several factors in mammalian tubules, including peptide hormones (e.g., bradykinin) and the autonomic nervous system acting via protein kinase C (PKC) pathways and epidermal growth factor (EGF) working via the mitogen-activated protein kinase (MAPK) pathway.  相似文献   

8.
Binding of the anion-exchange inhibitor 3H2-labeled 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) to highly purified luminal and basolateral beef kidney tubular membranes was characterized. Specific binding of [3H2]DIDS is present in both luminal and basolateral membranes. Scatchard analysis revealed a Kd for [3H2]DIDS of 5.5 microM and 19.3 microM and a maximal number of binding sites of 10.9 nmol and 31.7 nmol DIDS/mg protein in basolateral and luminal membranes, respectively. To assess the role of this putative anion exchanger on transport we measured 35SO4 uptake by luminal and basolateral membranes. In both luminal and basolateral membranes sulfate uptake was significantly greater in the presence of an outward-directed Cl gradient, OH gradient or HCO3 gradient than in the absence of these gradients. There was an early anion-dependent sulfate uptake of five to ten times the equilibrium uptake at 60 min. The sulfate taken in could be released by lysis of the vesicles indicating true uptake and not binding of sulfate. No significant difference in SO4 uptake was found in the presence and in the absence of valinomycin, indicating that the anion exchanger is electroneutral. The anion-dependent sulfate uptake was completely inhibited by either DIDS or furosemide in both luminal and basolateral membranes. Dixon analysis of HCO3-dependent SO4 uptake by luminal membranes in the presence of different concentrations of DIDS revealed a Ki for DIDS of 20 microM. The similar values of the Kd for [3H2]DIDS binding and the Ki for DIDS inhibition of SO4 uptake might suggest an association between DIDS binding and the inhibition of SO4 transport. In addition, an inward-directed Na gradient stimulated sulfate uptake in luminal but not in basolateral membranes. The Na-dependent sulfate uptake in luminal membranes was also inhibited by DIDS. We conclude that, in addition to the well-known Na-dependent sulfate uptake in luminal membranes, there exists an anion exchanger in both basolateral and luminal membranes capable of sulfate transport.  相似文献   

9.
Membrane transport pathways for transcellular secretion of urate across the proximal tubule were investigated in avian kidney. The presence of coupled urate/alpha-ketoglutarate exchange was investigated in basolateral membrane vesicles (BLMV) by [(14)C]urate and [alpha-(3)H]ketoglutarate flux measurements. An inward Na gradient induced accumulation of alpha-ketoglutarate of sufficient magnitude to suggest a Na-dicarboxylate cotransporter. An inward Na gradient also induced concentrative accumulation of urate in the presence of alpha-ketoglutarate but not in its absence, suggesting urate/alpha-ketoglutarate exchange. alpha-Ketoglutarate-dependent stimulation of urate uptake was not observed in brush-border membrane vesicles. An outward urate gradient induced concentrative accumulation of alpha-ketoglutarate. alpha-Ketoglutarate-coupled urate uptake was specific for alpha-ketoglutarate, Cl dependent, and insensitive to membrane potential. alpha-Ketoglutarate-coupled urate uptake was inhibited by increasing p-aminohippurate (PAH) concentrations, and alpha-ketoglutarate-coupled PAH uptake was observed. alpha-Ketoglutarate-coupled PAH uptake was inhibited by increasing urate concentrations, and an outward urate gradient induced concentrative accumulation of PAH. These results suggest a Cl-dependent, alpha-ketoglutarate-coupled anion exchange mechanism as a pathway for active urate uptake across the basolateral membrane of urate-secreting proximal tubule cells.  相似文献   

10.
Urinary epithelia separate urine from interstitial fluid. In the mammal, this tight epithelium has a limited transport capacity but is capable of moving sodium from urine to blood through an aldosterone-sensitive cellular pathway. In lower vertebrates, absorption of ions and water from the urine can contribute significantly to fluid and electrolyte homeostasis. Transepithelial ion transport and maintenance of cellular composition are interdependent, requiring a balance between movements across the apical and basolateral plasma membranes through a variety of pathways including electrodiffusion through ion channels. A variety of such channels has been identified in urinary epithelia. Apical membranes contain amiloride-sensitive, highly selective sodium channels of low conductance (approximately 5-10 pS). There is evidence that in mammalian bladders trypsin-like enzymes in the urine continually degrade these channels, decrease in cation selectivity being followed by loss of the channels from the membrane. New channels stored in the cytoplasm appear to provide a source for replenishment of the membrane. Other channels of higher conductance and lower selectivity have also been described in both mammalian and amphibian bladders, but their physiological significance remains to be established. Basolateral membranes contain potassium channels. In the mammalian bladder, in which chloride appears to be distributed at electrochemical equilibrium, chloride conductance exceeds potassium conductance and patch clamp studies have revealed a chloride channel of conductance approximately 60 pS detectable immediately on patch excision and active at normal membrane potentials. In the amphibian bladder, a variety of findings indicates the presence of a basolateral membrane chloride conductance, but patch clamp data are not yet available.  相似文献   

11.
In this work, dynamics was studied of uptake of p-aminohippurate by basolateral membrane vesicles isolated from rat kidney proximal tubules. The uphill PAH transport into the basolateral membrane vesicles was shown to occur in the presence of α-ketoglutarate and Na+-gradient. Based on mathematical model of symport and antiport cooperation, the mechanism of energy coupling of PAH transport via exchanger with Na+-dicarboxylate symport is discussed. Based on comparison of our own and literature data, the data analysis shows adequacy of the proposed mathematical model to describe the symport and antiport cooperation. This model has been shown to enable estimation of re-orientation probability of the empty anion exchanger (without substrate) from one membrane side to the other.  相似文献   

12.
Extracellular nucleotides such as ATP have been shown to regulate ion transport processes in a variety of epithelia. This effect is mediated by the activation of plasma membrane P2Y receptors, which leads to Ca(2+) signaling cascade. Ion transport processes (e.g. activation of apical calcium-dependent Cl(-) channels) are then stimulated via an increase in [Ca(2+)](i). Many polarized epithelia express apical and/or basolateral P2Y receptors. To test whether apical and basolateral stimulation of P2Y receptors elicit polarized Ca(2+) signaling and anion secretion, we simultaneously measured the two parameters in polarized epithelia. Although activation of P2Y receptors located at both apical and basolateral membranes evoked an increase in [Ca(2+)](i), only apical P2Y receptors-coupled Ca(2+) release stimulated an increase in anion secretion. Moreover, the calcium influx evoked by apical and basolateral P2Y receptor stimulation is predominately via the basolateral membrane domain. It appears that the apical P2Y receptor-regulated Ca(2+) release and activation of apical Cl(-) channels is compartmentalized in polarized epithelia with basolateral P2Y-stimulated Ca(2+) release failing to activate anion secretion. These data suggest that there may be two distinct ATP-releasable Ca(2+) pools, each coupled to apical and basolateral membrane receptor but linked to the same calcium influx pathway located at the basolateral membrane.  相似文献   

13.
Cell volume regulation occurs in both tight, Na+-transporting epithelia (e.g., frog skin) and in leaky. NaCl-transporting epithelia (e.g. amphibian gallbladder). In tight epithelia volume regulation occurs only in response to cell swelling, i.e. only regulatory volume decrease (RVD) is observed, whereas in leaky epithelia cell volume regulation has been observed in response to osmotic challenges that either swell or shrink the cells. In other words, both RVD and regulatory volume increase (RVI) are present. Both volume regulatory responses involve stimulation of ion transport in a polarized fashion: in RVD the response is basolateral KCl efflux, whereas in RVI it is apical membrane NaCl uptake. The loss of KCl during RVD appears to result in most instances from increases in basolateral electrodiffusive K+ and Cl-permeabilities. In gallbladder, concomitant activation of coupled KCl efflux may also occur. The RVI response includes activation of apical membrane cation (Na+/H+) and anion (Cl-/HCO-3) exchangers. It is presently unclear whether the net ion fluxes resulting from activation of these transporters, during either RVD or RVI, account for the measured rates of restoration of cell volume. In gallbladder epithelium, RVD is inhibited by agents which disrupt microfilaments or interfere with the Ca2+-calmodulin system. These pharmacologic effects are absent in RVI. Some steps in the chain of events resulting in either RVI or RVD have been established, but the signals involved remain largely unknown. There is reason to suspect a role of intracellular pH in the case of RVI and of membrane insertion of transporters in the case of RVD, possibly with causal roles of both intracellular Ca2+ and the cytoskeleton in the latter.  相似文献   

14.
The flux of amino acids and other nutrient solutes such as phosphate across lipid bilayers (liposomes) is 105 slower than facilitated inward transport across biological membranes. This suggests that primitive cells lacking highly evolved transport systems would have difficulty transporting sufficient nutrients for cell growth to occur. There are two possible ways by which early life may have overcome this difficulty: (1) The membranes of the earliest cellular life-forms may have been intrinsically more permeable to solutes; or (2) some transport mechanism may have been available to facilitate transbilayer movement of solutes essential for cell survival and growth prior to the evolution of membrane transport proteins. Translocation of neutral species represents one such mechanism. The neutral forms of amino acids modified by methylation (creating protonated weak bases) permeate membranes up to 1010 times faster than charged forms. This increased permeability when coupled to a transmembrane pH gradient can result in significantly increased rates of net unidirectional transport. Such pH gradients can be generated in vesicles used to model protocells that preceded and were presumably ancestral to early forms of life. This transport mechanism may still play a role in some protein translocation processes (e.g., for certain signal sequences, toxins and thylakoid proteins) in vivo.Abbreviations LUV large unilamellar vesicle - pH transmembrane pH gradient - PAH polyaromatic hydrocarbon Correspondence to: A.C. Chakrabarti  相似文献   

15.
Band 3 protein extracted from human erythrocyte membranes by Triton X-100 was recombined with the major classes of phospholipid occurring in the erythrocyte membrane. The resulting vesicle systems were characterized with respect to recoveries, phospholipid composition, protein content and vesicle size as well as capacity and activation energy of sulfate transport. Transport was classified into band-3-specific fluxes and unspecific permeability by inhibitors. Transport numbers (sulfate ions per band 3 per minute) served as a measure of functional recovery after reconstitution. The transport properties of band 3 proved to be insensitive to replacement of phosphatidylcholine by phosphatidylethanolamine, while sphingomyelin and phosphatidylserine gradually inactivated band-3-specific anion transport when present at mole fractions exceeding 30 mol%. The activation energy of transport remained unaltered in spite of the decrease in transport numbers. The results, which are discussed in terms of requirements of band 3 protein function with respect to the fluidity and surface charge of its lipid environment, provide a new piece of evidence that the transport function of band 3 protein depends on the properties of its lipid environment just as the catalytic properties of some other membrane enzymes. The well-established species differences in anion transport (Gruber, W. and Deuticke, B. (1973) J. Membrane Biol. 13, 19–36) may to some extent reflect this lipid dependence.  相似文献   

16.
The transport of inorganic anions across human red blood cell membranes is accomplished by a carrier-like mechanism which involves an electroneutral and obligatory one-for-one anion exchange. The transport kinetics were described by models that involve alternation of single transport sites between the two membrane surfaces. These models predict that each carrier shows either an inward-facing Ei or an outward-facing Eo, conformation, each capable of binding either a monovalent anion or a divalent anion + a proton, to yield an electroneutral translocating complex. Unidirectional transport rates provide, therefore, a measure for the relative concentration of carriers at a given membrane surface. In the present work we assessed how modulation of the transmembrane distribution of carriers by the anion composition of cells and media, and by pH, affect the anion transport system. We have set the system in asymmetric conditions with respect to anions, so that a fast transportable anion (e.g., chloride) was present in one side of the membrane and slow transportable anions (e.g., sulfate, phosphate, oxalate, isethionate, gluconate, HEPES) were present on the other side of the membrane. The skewed distribution of carriers induced in these conditions were assessed by two methods: 1) NBD-taurine transfer which provided a measure for [Ei], the monovalent inward-facing form of the carrier, and 2) inhibition of NBD-taurine transfer by the specific impermeant and competitive inhibitor 4,4'-dinitro-2,2'-stilbene disulfonic acid (DNDS), which provided a measure for the availability of the carrier at the outer membrane surface. In the various symmetric and asymmetric conditions, we found marked differences in transport rates and transport profiles as well as in the susceptibility of the system to inhibition by DNDS. Direct binding studies of DNDS to cells in the various asymmetric conditions supported the conclusion derived from transport studies that transport sites can be recruited towards the membrane surface facing the slow transportable anions.  相似文献   

17.
We evaluated the mechanism of oxalate transport in basolateral membrane vesicles isolated from the rabbit renal cortex. An outward HCO3- gradient induced the transient uphill accumulation of oxalate and sulfate, indicating the presence of oxalate/HCO3- exchange and sulfate/HCO3- exchange. For oxalate, sulfate, or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, the K1/2 value for oxalate/HCO3- exchange was nearly identical to that for sulfate/HCO3- exchange, suggesting that both exchange processes occur via the same transport system. This was further supported by the finding of sulfate/oxalate exchange. Thiosulfate/sulfate exchange and thiosulfate/oxalate exchange were also demonstrated, but a variety of other tested anions including Cl-, p-aminohippurate, and lactate did not exchange for sulfate or oxalate. Na+ did not affect sulfate or oxalate transport, indicating that neither anion undergoes Na+ co-transport or Na+-dependent anion exchange in these membrane vesicles. Finally, we found that the stoichiometry of exchange is 1 sulfate or oxalate per 2 HCO3-, or a thermodynamically equivalent process. We conclude that oxalate, but not other organic or inorganic anions of physiologic importance, can share the sulfate/HCO3- exchanger in renal basolateral membrane vesicles. In series with luminal membrane oxalate/Cl- (formate) exchange, exchange of oxalate for HCO3- or sulfate across the basolateral membrane provides a possible transcellular route for oxalate transport in the proximal tubule.  相似文献   

18.
The uptake of p-amino[3H]hippurate by isolated perfused rat kidney was studied to characterize the mechanism which was responsible for organic anion transport process. A rapid injection multiple indicator dilution technique and the distributed two-compartment model of Sawada et al. (Computer Methods Programs Biomed., 20 (1985) 51) were employed. Some characteristics of a carrier-mediated transport from the antiluminal space to the intracellular space for p-aminohippurate at the basolateral side were demonstrated: the uptake was stimulated by the countertransport effect and showed Na+ dependency. These findings are consistent with p-amino[3H]hippurate's being taken up into the isolated rat basolateral membrane vesicle by Na+-dependent carrier-mediated transport (J. Pharmacol. Exp. Ther. 227 (1983) 122). It is suggested that the multiple indicator dilution technique is a sensitive new method to study the mechanisms of renal tubular transport in the living kidney as an organ.  相似文献   

19.
Biomembrane interactions of flavonoids and alkyl gallates were investigated using transport studies on Caco-2 cells and membrane affinity experiments in phospholipid vesicles. Flavone was rapidly absorbed across the cell monolayer (P(app),380 x 10(-6) cm/s), whereas efficient uptake but no apical to basolateral transport was observed with the flavonoids with higher degree of hydroxylation (e.g., quercetin and luteolin). The transport of alkyl gallates was governed by the length of the alkyl chain, i.e., methyl and propyl gallate were absorbed while octyl gallate showed cellular uptake but no transport. Flavonoids with several hydroxyl groups exhibited highest affinity for vesicle membranes, partition coefficients being 7.1 and 7.5 microM for luteolin and quercetin, respectively. In conclusion, the degree of hydroxylation, molecular configuration, and length of the side chain of flavonoids and alkyl gallates seem to have a highly important impact on their membrane affinity as well as on their permeability characteristics in Caco-2 cells.  相似文献   

20.
The mucosa that lines the airways is covered with a fluid film forming a hypophase between mucus and cell surface. To study the function of this epithelium aims at describing the mechanisms by which fluid is normally produced. Another goal to be pursued consists in looking for the origin of pathological situations, such as cystic fibrosis, in which the functioning of epithelial cell is altered. The elucidation of transport mechanisms present in the apical and in the basolateral membrane results in a conceptual model that illustrates the asymmetrical functioning of epithelial cells. Recent discoveries enlarge our understanding of membrane transport processes; in particular, a concerted, reciprocal regulation of the activity of both membranes was shown to be exerted via the intracellular composition. The tracheal epithelium absorbs Na+ and secretes Cl-. These two transports are active and electrogenic; their sum corresponds approximately to the short-circuit current measured in vitro. Na+ absorption is sensitive to amiloride from the luminal side and also to ouabain added to the serosal compartment. The process is a primary active transport, analogous to that found in amphibian epithelia or in mammalian colon. Cl- secretion is abolished by furosemide (or bumetanide), by ouabain or by Na+ suppression in the serosal incubation solution. The mechanism is a secondary active transport: Cl- influx across the basolateral membrane is coupled to Na+ (probably through Na+, K+, Cl- symport); energy is dissipated by the Na+-K+-ATPase localised in the basolateral membrane. Thus, Na+ is recirculated across that membrane by the pump activity, which maintains a favorable gradient for influx via the symport. Cl- efflux takes place by diffusion through the luminal membrane. This model applies to other epithelia in which Na+-coupled Cl- secretion was shown to take place. It is confirmed by isotopic fluxes measurements and by electrophysiologic properties of the apical and the basolateral membrane. Various agents are known to influence ion transports. In particular Cl- secretion is stimulated by substances that increase the intracellular concentration of cyclic AMP. At the membrane level, the number of active Cl- channels in the apical membrane is primarily controlled, then the basolateral membrane K+ permeability. Yet, species differences are worth to note: the trachea of the cow is barely sensitive to agents that exert a marked action on dog trachea. The tracheal epithelium is used as an experimental model for studying cystic fibrosis, a disease in which the apical membrane is almost devoid of functional Cl- channels, so that Cl- permeability is quite low.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号