首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. This article summarizes some of the recent advances in the understanding of structural and functional properties of isolated small synaptic vesicles (SSV) from mammalian brain. 2. SSV contain a set of integral membrane proteins which are highly specific for this organelle and which occur on all SSV of the central and peripheral nervous system irrespective of their transmitter content. In contrast, these proteins are absent from the membrane of peptide-containing large dense-core vesicles indicating that the two types of organelle have a different membrane composition. The availability of antibodies for these proteins has allowed the evaluation of the purity of vesicle preparations which is instrumental for functional studies. 3. Recent advances in the study of neurotransmitter uptake have revealed that SSV contain specific carrier systems for glutamate and GABA. They are different from the transporters of the plasma membrane, and are dependent on the energy of a proton electrochemical gradient. The uptake of glutamate has been characterized in some detail and the mechanistic and physiological implications of these findings are discussed.  相似文献   

2.
A complete set of SNAREs in yeast   总被引:4,自引:1,他引:4  
Trafficking of cargo molecules through the secretory pathway relies on packaging and delivery of membrane vesicles. These vesicles, laden with cargo, carry integral membrane proteins that can determine with which target membrane the vesicle might productively fuse. The membrane fusion process is highly conserved in all eukaryotes and the central components driving membrane fusion events involved in vesicle delivery to target membranes are a set of integral membrane proteins called SNAREs. The yeast Saccharomyces cerevisiae has served as an extremely useful model for characterizing components of membrane fusion through genetics, biochemistry and bioinformatics, and it is now likely that the complete set of SNAREs is at hand. Here, we present the details from the searches for SNAREs, summarize the domain structures of the complete set, review what is known about localization of SNAREs to discrete membranes, and highlight some of the surprises that have come from the search.  相似文献   

3.
There is now abundant evidence that integral membrane protein function may be modulated by the physical properties of membrane lipids. The intestinal brush border membrane represents a membrane system highly specialized for nutrient absorption and, thus, provides an opportunity to study the interaction between integral membrane transport proteins and their lipid environment. We have previously demonstrated that alterations in this environment may modulate the function of the sodium-dependent glucose transporter in terms of its affinity for glucose. In this communication we report that membrane lipid-protein interactions are distinctly different for the proline transport proteins. Maximal transport rates for L-proline by either the neutral brush border or imino transport systems are reduced 10-fold when the surrounding membrane environment is made more fluid over the physiological range that exists along the crypt-villus axis. Furthermore, in microvillus membrane vesicles prepared from enterocytes isolated from along the crypt-villus axis a similar gradient exists in the functional activity of these transport systems. This would imply that either the functional activity of these transporters are regulated by membrane physical properties or that the synthesis and insertion of these proteins is coordinated in concert with membrane physical properties as the enterocyte migrates up the crypt-villus axis.  相似文献   

4.
Integral membrane proteins are involved in a wide range of essential biological functions and the determination of their three-dimensional structures plays a central role in understanding their function. This review focuses on the structures of one class of integral membrane proteins: the functionally diverse all-alpha type membrane proteins. It gives an overview of all the structures determined by X-ray crystallography, describing each system and structure in turn. It shows that the structures of all-alpha type membrane proteins have made valuable contributions to understanding structure–function relationships in membrane proteins. These range from the first insights into the function of exciting individual proteins to an in-depth knowledge of protein function from entire biological systems.  相似文献   

5.
Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.  相似文献   

6.
Membrane proteins are hard to handle and consequently the purification of functional protein in milligram quantities is a major problem. One reason for this is that once integral membrane proteins are outside their native membrane, they are prone to aggregation, are unstable and are frequently only partially functional. Knowledge of membrane protein folding mechanisms in vitro can help to understand the causes of these problems and work toward strategies to disaggregate and fold proteins correctly. Kinetic and stability studies are emerging on membrane protein folding, mainly on bacterial proteins. Mutagenesis methods have also been used to probe specific structural features or bonds in proteins. In addition, manipulation of lipid properties can be used to improve the efficiency of folding as well as the stability and function of the protein.  相似文献   

7.
Peroxisomal proteins are synthesized on free polysomes and then transported from the cytoplasm to peroxisomes. This process is mediated by two short well-defined targeting signals in peroxisomal matrix proteins, but a well-defined targeting signal has not yet been described for peroxisomal membrane proteins (PMPs). One assumption in virtually all prior studies of PMP targeting is that a given protein contains one, and only one, distinct targeting signal. Here, we show that the metabolite transporter PMP34, an integral PMP, contains at least two nonoverlapping sets of targeting information, either of which is sufficient for insertion into the peroxisome membrane. We also show that another integral PMP, the peroxin PEX13, also contains two independent sets of peroxisomal targeting information. These results challenge a major assumption of most PMP targeting studies. In addition, we demonstrate that PEX19, a factor required for peroxisomal membrane biogenesis, interacts with the two minimal targeting regions of PMP34. Together, these results raise the interesting possibility that PMP import may require novel mechanisms to ensure the solubility of integral PMPs before their insertion in the peroxisome membrane, and that PEX19 may play a central role in this process.  相似文献   

8.
Integral membrane proteins are found in all cellular membranes and fulfil many of the functions that are central to life. A critical step in the biosynthesis of membrane proteins is their insertion into the lipid bilayer. The mechanisms of membrane protein insertion and folding are becoming increasingly better understood, and efficient methods for the ab initio prediction of three-dimensional protein structure from the primary amino acid sequence may be within reach. Already, the basic tools needed for engineering and de novo design of integral membrane proteins seem to be at hand.  相似文献   

9.
Membrane proteins are hard to handle and consequently the purification of functional protein in milligram quantities is a major problem. One reason for this is that once integral membrane proteins are outside their native membrane, they are prone to aggregation, are unstable and are frequently only partially functional. Knowledge of membrane protein folding mechanisms in vitro can help to understand the causes of these problems and work toward strategies to disaggregate and fold proteins correctly. Kinetic and stability studies are emerging on membrane protein folding, mainly on bacterial proteins. Mutagenesis methods have also been used to probe specific structural features or bonds in proteins. In addition, manipulation of lipid properties can be used to improve the efficiency of folding as well as the stability and function of the protein.  相似文献   

10.
A proteomic analysis of the synaptic vesicle was undertaken to obtain a better understanding of vesicle regulation. Synaptic vesicles primarily consist of integral membrane proteins that are not well resolved on traditional isoelectric focusing/two-dimensional gel electrophoresis (IEF/2-DE) gels and are resistant to in-gel digestion with trypsin thereby reducing the number of peptides available for mass spectrometric analysis. To address these limitations, two complementary 2-DE methods were investigated in the proteome analysis: (a) IEF/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (IEF/SDS-PAGE) for resolution of soluble proteins and, (b) Benzyl hexadecyl ammonium chloride/SDS-PAGE (16-BAC/SDS-PAGE) for resolution of integral membrane proteins. The IEF/SDS-PAGE method provided superior resolution of soluble proteins, but could only resolve membrane proteins with a single transmembrane domain. The 16-BAC/SDS-PAGE method improved separation, resolution and identification of integral membrane proteins with up to 12 transmembrane domains. Trypsin digestion of the integral membrane proteins was poor and fewer peptides were identified from these proteins. Analysis of both the peptide mass fingerprint and the tandem mass spectra using electrospray ionization quadrupole-time of flight mass spectrometry led to the positive identification of integral membrane proteins. Using both 2-DE separation methods, a total of 36 proteins were identified including seven integral membrane proteins, 17 vesicle regulatory proteins and four proteins whose function in vesicles is not yet known.  相似文献   

11.
The physico-chemical properties of short-chain phosphatidylcholine are reviewed to the extent that its biological activity as a mild detergent can be rationalized. Long-chain diacylphosphatidylcholines are typical membrane phospholipids that form preferentially smectic lamellar phases (bilayers) when dispersed in water. In contrast, the preferred phase of the short-chain analogues dispersed in excess water is the micellar phase. The preferred conformation and the dynamics of short-chain phosphatidylcholines in the monomeric and micellar state present in H(2)O are discussed. The motionally averaged conformation of short-chain phosphatidylcholines is then compared to the single-crystal structures of membrane lipids. The main conclusion emerging is that in terms of preferred conformation and motional averaging short-chain phosphatidylcholines closely resemble their long-chain analogues. The dispersing power of short-chain phospholipids is emphasized in the second part of the review. Evidence is presented to show that this class of compounds is superior to most other detergents used in the solubilization of membrane proteins and the reconstitution of the solubilized proteins to artificial membrane systems (proteoliposomes). The prominent feature of the solubilization/reconstitution of integral membrane proteins by short-chain PC is the retention of the native protein structure and hence the protein function. Due to their special detergent-like properties, short-chain PC lend themselves very well not only to membrane solubilization but also to the purification of integral membrane proteins. The retention of the native protein structure in the solubilized state, i.e. in mixed micelles consisting of the integral membrane protein, intrinsic membrane lipids and short-chain PC, is rationalized. It is hypothesized that short-chain PC interacts primarily with the lipid bilayer of a membrane and very little if at all with the membrane proteins. In this way, the membrane protein remains associated with its preferred intrinsic membrane lipids and retains its native structure and its function.  相似文献   

12.
V. Bennett  J. Steiner  J. Davis 《Protoplasma》1988,145(2-3):89-94
Summary The purpose of this review is to summarize recent progress in understanding interactions of spectrin with membranes from brain and other tissues. Spectrin has at least two choices in linkages with the membrane, one through ankyrin, which in turn is associated with integral membrane proteins, and another linkage directly with integral membrane sites identified recently in brain membranes. Some of the integral membrane protein sites in brain bind preferentially with one spectrin isoform, while some can interact with both erythroid and the general isoform of spectrin. Ankyrin also has different isoforms, and these exhibit specificity in binding to spectrin isoforms and associate with distinct integral membrane proteins. The membrane binding sites for ankyrin include several integral membrane proteins, which are differentially expressed in different cells: the anion exchanger of intercalated cells of mammalian kidney, the sodium/potassium ATPase of kidney, and the voltage-dependent sodium channel of neurons. Ankyrin is present in many other cell types and it is likely that additional ankyrin-binding proteins will be identified. Each of the proteins that now are candidates for ankyrin binding proteins are ion channels or transporters and are localized in specialized cellular domains. The polarized localization of the ankyrin-associated membrane proteins is an essential aspect of their function at a physiological level. Spectrin and ankyrin thus exhibit an unsuspected diversity in protein linkages and have the potential for cell domain-specific interactions with a variety of membrane proteins.  相似文献   

13.
Camel erythrocyte membranes are distinguished by some unique properties of stability and composition. Notable is their abundance in proteins (protein: lipid ratio of 3 : 1). Membrane proteins of camel erythrocytes were compared with those of human erythrocytes, which have been intensively investigated. Proteins were extracted with various aqueous media (EDTA, alkaline or high ionic strength) and with ionic and non-ionic detergents and were analyzed by gel electrophoresis. In membranes of camel erythrocytes, the peripheral proteins constitute, proportionally, a much smaller fraction of total proteins than in the human erythrocyte, while their distribution is identical per unit of surface area. The camel erythrocyte membrane is particularly rich in integral proteins and in intramembranous particles. The proteins in this membrane are more closely organized than in the human system, as revealed by crosslinking and freeze-etching studies. It is proposed that protein-protein interaction of integral proteins, presumably constituting an “integral skeleton”, is a dominant structural feature stabilizing the camel erythrocyte membrane.  相似文献   

14.
The red blood cell membrane is a complex material that exhibits both solid- and liquidlike behavior. It is distinguished from a simple lipid bilayer capsule by its mechanical properties, particularly its shear viscoelastic behavior and by the long-range mobility of integral proteins on the membrane surface. Subject to sufficiently large extension, the membrane loses its shear rigidity and flows as a two-dimensional fluid. These experiments examine the change in integral protein mobility that accompanies the mechanical phenomenon of extensional failure and liquidlike flow. A flow channel apparatus is used to create red cell tethers, hollow cylinders of greatly deformed membrane, up to 36-microns long. The diffusion of proteins within the surface of the membrane is measured by the technique of fluorescence redistribution after photobleaching (FRAP). Integral membrane proteins are labeled directly with a fluorescein dye (DTAF). Mobility in normal membrane is measured by photobleaching half of the cell and measuring the rate of fluorescence recovery. Protein mobility in tether membrane is calculated from the fluorescence recovery rate after the entire tether has been bleached. Fluorescence recovery rates for normal membrane indicate that more than half the labeled proteins are mobile with a diffusion coefficient of approximately 4 x 10(-11) cm2/s, in agreement with results from other studies. The diffusion coefficient for proteins in tether membrane is greater than 1.5 x 10(-9) cm2/s. This dramatic increase in diffusion coefficient indicates that extensional failure involves the uncoupling of the lipid bilayer from the membrane skeleton.  相似文献   

15.
Caveolae are abundant surface pits formed by the assembly of cytoplasmic proteins on a platform generated by caveolin integral membrane proteins and membrane lipids. This membranous assembly can bud off into the cell or can be disassembled releasing the cavin proteins into the cytosol. Disassembly can be triggered by increased membrane tension, or by stress stimuli, such as UV. Here, we discuss recent mechanistic studies showing how caveolae are formed and how their unique properties allow them to function as multifunctional protective and signaling structures.  相似文献   

16.
The review is focused on the molecular structure and function of the proteins composing the actin-based cytokeletal cortex, located at the cytoplasmic face of plasma membranes of eucaryotic cells, which stabilizes integral membrane proteins in separate domains of cell membranes. It includes a survey of the molecular properties of teh proteins of the erythrocyte membrane skeleton such as spectrin, ankyrin, protein 4.1, and adducin. The properties of the immunological counterparts of erythroid cortical proteins found in nonerythroid tissues and cells are compared. The structural organization and function of the newly discovered class of calcium-binding proteins, nonerythroid peripheral membrane proteins, calpactins, are also described. Finally, the discussion of some experimental models illustrates that the membrane skeleton of living cells is actively involved in a wide variety of essential biological functions ranging from differentiation, to maintenance of cell polarity and cell shape, and regulation of exocytotic processes.  相似文献   

17.
It is difficult to understand the functional mechanisms of integral membrane proteins without having protein chemical information on these proteins. Although there have been many attempts to identify functionally important amino acids in membrane proteins, chemically and enzymatically cleaved peptides of integral membrane proteins have been difficult to handle because of their hydrophobic properties. In the present study, we have applied an analytical method to transmembrane proteins combining amino acid sequencing, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, and liquid chromatography with electrospray ionization (LC/ESI) mass spectrometry. We could analyze most (97%) of the tryptic fragments of the transmembrane domains of band 3 as well as other minor membrane proteins. The peptide mapping of the transmembrane domain of band 3 was completed and the peptide mapping information allowed us to identify the fragments containing lysine residues susceptible to 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) and to 2,4-dinitrofluorobenzene (DNFB). This method should be applicable to membrane proteins not only in erythrocyte membranes but also in other membranes.  相似文献   

18.
The biomimetic approach copying the supramolecular building principle of many archaeal cell envelopes (i.e., a plasma membrane with associated S-layer proteins) has resulted in stable lipid membranes with excellent reconstitution properties for transmembrane proteins. This is a particular challenge as one-third of all proteins in an organism are membrane proteins like pores, ion channels, or receptors. At S-layer supported lipid membranes, spatial well-defined domains on the S-layer protein interact noncovalently with lipid head groups within the lipid membrane resulting in a nanopatterning of a few anchored and scores of diffusional free-lipid molecules. In addition, no impact on the hydrophobic core region and on the function of reconstituted integral proteins has been determined. Among others, particularly S-layer stabilized membranes can be used for structure-function studies on reconstituted integral proteins and also in the membrane protein-based molecular nanotechnology, e.g., in the design of biosensing devices (e.g., lipid chip or lab-on-a-chip), or for receptor or ion channel-based high-throughput screening.  相似文献   

19.
This review describes aspects of negative staining of isolated integral membrane proteins. Detergents play a central role in the isolation of membrane proteins and also in their solubility in aqueous solutions. Specimens of mixed micelles of membrane proteins and nonionic detergents can be easily prepared as long as the detergent concentration remains above the critical micellar concentration. Membrane proteins involved in the process of photosynthesis have been taken as examples to illustrate their interaction with different detergents. Upon negative staining, mixed micelles of membrane proteins and detergents show characteristic top and side view projections. On their sides, mixed micelles can easily aggregate into strings.  相似文献   

20.
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号