首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tau is the major microtubule-associated protein in neurons involved in microtubule stabilization in the axonal compartment. Changes in tau gene expression, alternative splicing and posttranslational modification regulate tau function and in tauopathies can result in tau mislocalization and dysfunction, causing tau aggregation and cell death. To uncover proteins involved in the development of tauopathies, a yeast two-hybrid system was used to screen for tau-interacting proteins. We show that axotrophin/MARCH7, a RING-variant domain containing protein with similarity to E3 ubiquitin ligases interacts with tau. We defined the tau binding domain to amino acids 552–682 of axotrophin comprising the RING-variant domain. Co-immunoprecipitation and co-localization confirmed the specificity of the interaction. Intracellular localization of axotrophin is determined by an N-terminal nuclear targeting signal and a C-terminal nuclear export signal. In AD brain nuclear localization is lost and axotrophin is rather associated with neurofibrillary tangles. We find here that tau becomes mono-ubiquitinated by recombinant tau-interacting RING-variant domain, which diminishes its microtubule-binding. In vitro ubiquitination of four-repeat tau results in incorporation of up to four ubiquitin molecules compared to two molecules in three-repeat tau. In summary, we present a novel tau modification occurring preferentially on 4-repeat tau protein which modifies microtubule-binding and may impact on the pathogenesis of tauopathies.  相似文献   

2.
BackgroundThe abnormal assembly of tau into neurofibrillary tangles has been associated with over 30 debilitating disorders known as tauopathies. Tauopathies affect millions of people worldwide, yet no clinically approved solution for tau aggregation is currently available.MethodsWe employed a structure-based design approach to make a series of short peptide-based perturbants (Trojans), that can interact with the core hydrophobic fragment of tau protein. Through a combination of various biophysical methods, serum stability, toxicity, and blood-brain barrier translocation assays, we have assessed the efficacy of these designed peptides to intervene the aggregation of tau protein fragment.ResultsOur observations suggest that Trojan peptides could modulate the aggregation of the Ac-VQIVYK-NH2 peptide by either accelerating or arresting its self-assembly and reduce the neurotoxicity of the fibrils formed. The designed perturbant peptides showed three essential pre-requisites such as negligible cytotoxicity, high proteolytic stability in serum, and an ability to cross human blood-brain barrier (BBB). Furthermore, the Trojans could disassemble the pre-formed fibrillar assemblies.ConclusionsThese designed Trojan peptides can serve as a potential therapeutic option for tauopathies, modulating post as well as pre-aggregation leading to the diseases condition.General significanceTauopathies are a group of over 20 progressive neurodegenerative disorders that affect millions of people worldwide. The available therapies of tau-linked neurodegenerative syndromes are limited and mostly symptomatic and therefore there is an urgent need for a cost-effective treatment option. We are presenting a series of structure-based, de novo designed, short peptides that can potentially modulate tau protein aggregation.  相似文献   

3.
Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3ζ. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3ζ is ∼3-folds higher than that between unphosphorylated 4R-tau and 14-3-3ζ. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3ζ to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3ζ. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3ζ exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3ζ suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.  相似文献   

4.
Tau becomes characteristically altered both functionally and structurally in several neurodegenerative diseases now collectively called tauopathies. Although increasing evidence supports that alterations of tau may directly cause neuronal degeneration and cell death, the mechanisms, which render tau to become a toxic agent are still unclear. In addition, it is obscure, whether neurodegeneration in tauopathies occurs via a common mechanism or specific differences exist. The aim of this review is to provide an overview about the different experimental models that currently exist, how they are used to determine the role of tau during degeneration and what has been learnt from them concerning the mechanistic role of tau in the disease process. The review begins with a discussion about similarities and differences in tau alteration in paradigmatic tauopathies such as frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and Alzheimer's disease (AD). The second part concentrates on major experimental models that have been used to address the mechanistic role of tau during degeneration. This will include a discussion of cell-free assays, culture models using cell lines or dissociated neurons, and animal models. How these models aid to understand (i) alterations in the function of tau as a microtubule-associated protein (MAP), (ii) direct cytotoxicity of altered tau protein, and (iii) the potential role of tau aggregation in neurodegenerative processes will be the central theme of this part. The review ends with concluding remarks about a general mechanistic model of the role of tau alteration and neuronal degeneration in tauopathies and future perspectives.  相似文献   

5.
In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion‐like mechanism has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans‐synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in the absence of endogenous tau. We then tested whether the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau‐overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau‐null background, these mice had similar tangle numbers but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.  相似文献   

6.
Avila J 《FEBS letters》2006,580(12):2922-2927
In this article I shall review how tau phosphorylation and aggregation participates in Alzheimer's disease (AD) and other tauopathies. Tau, a microtubule associated protein, is the main component, in phosphorylated form, of the aberrant paired helical filaments found in AD. Tau is present in phosphorylated and aggregated form not only in AD, but in other pathologies (tauopathies). In this review, the phosphorylation of tau, its aggregation, and the possible relation between tau phosphorylation and aggregation is, briefly, described. Also, it is discussed the toxicity of modified tau. In addition, I propose a working model detailing the progression of tau pathologies.  相似文献   

7.
The molecular mechanisms causing the loss of dopaminergic neurons containing neuromelanin in the substantia nigra and responsible for motor symptoms of Parkinson's disease are still unknown. The discovery of genes associated with Parkinson's disease (such as alpha synuclein (SNCA), E3 ubiquitin protein ligase (parkin), DJ‐1 (PARK7), ubiquitin carboxyl‐terminal hydrolase isozyme L1 (UCHL‐1), serine/threonine‐protein kinase (PINK‐1), leucine‐rich repeat kinase 2 (LRRK2), cation‐transporting ATPase 13A1 (ATP13A), etc.) contributed enormously to basic research towards understanding the role of these proteins in the sporadic form of the disease. However, it is generally accepted by the scientific community that mitochondria dysfunction, alpha synuclein aggregation, dysfunction of protein degradation, oxidative stress and neuroinflammation are involved in neurodegeneration. Dopamine oxidation seems to be a complex pathway in which dopamine o‐quinone, aminochrome and 5,6‐indolequinone are formed. However, both dopamine o‐quinone and 5,6‐indolequinone are so unstable that is difficult to study and separate their roles in the degenerative process occurring in Parkinson's disease. Dopamine oxidation to dopamine o‐quinone, aminochrome and 5,6‐indolequinone seems to play an important role in the neurodegenerative processes of Parkinson's disease as aminochrome induces: (i) mitochondria dysfunction, (ii) formation and stabilization of neurotoxic protofibrils of alpha synuclein, (iii) protein degradation dysfunction of both proteasomal and lysosomal systems and (iv) oxidative stress. The neurotoxic effects of aminochrome in dopaminergic neurons can be inhibited by: (i) preventing dopamine oxidation of the transporter that takes up dopamine into monoaminergic vesicles with low pH and dopamine oxidative deamination catalyzed by monoamino oxidase (ii) dopamine o‐quinone, aminochrome and 5,6‐indolequinone polymerization to neuromelanin and (iii) two‐electron reduction of aminochrome catalyzed by DT‐diaphorase. Furthermore, dopamine conversion to NM seems to have a dual role, protective and toxic, depending mostly on the cellular context.

  相似文献   


8.
Tauopathies represent a group of neurodegenerative disorder which are characterized by the presence of tau positive specialized argyrophilic and insoluble intraneuronal and glial fibrillar lesions known as neurofibrillary tangles (NFTs). Tau is a neuron specific microtubule binding protein which is required for the integrity and functioning of neuronal cells, and hyperphosphorylation of tau and its subsequent aggregation and paired helical filaments (PHFs) and NFTs has emerged as one of the major pathogenic mechanisms of tauopathies in human and mammalian model systems. Modeling of human tauopathies in Drosophila results in manifestation of associated phenotypes, and a recent study has demonstrated that similar to human and mammalian models, accumulation of insoluble tau aggregates in the form of typical neurotoxic NFTs triggers the pathogenesis of tauopathies in fly models. In view of the availability of remarkable genetic tools, Drosophila tau models could be extremely useful for in-depth analysis of the role of NFTs in neurodegeneration and tau aetiology, and also for the screening of novel gene(s) and molecule(s) which suppress the toxicity of tau aggregates.  相似文献   

9.
Nie CL  Wei Y  Chen X  Liu YY  Dui W  Liu Y  Davies MC  Tendler SJ  He RG 《PloS one》2007,2(7):e629
Recent studies have shown that neurodegeneration is closely related to misfolding and aggregation of neuronal tau. Our previous results show that neuronal tau aggregates in formaldehyde solution and that aggregated tau induces apoptosis of SH-SY5Y and hippocampal cells. In the present study, based on atomic force microscopy (AFM) observation, we have found that formaldehyde at low concentrations induces tau polymerization whilst acetaldehyde does not. Neuronal tau misfolds and aggregates into globular-like polymers in 0.01-0.1% formaldehyde solutions. Apart from globular-like aggregation, no fibril-like polymerization was observed when the protein was incubated with formaldehyde for 15 days. SDS-PAGE results also exhibit tau polymerizing in the presence of formaldehyde. Under the same experimental conditions, polymerization of bovine serum albumin (BSA) or alpha-synuclein was not markedly detected. Kinetic study shows that tau significantly misfolds and polymerizes in 60 minutes in 0.1% formaldehyde solution. However, presence of 10% methanol prevents protein tau from polymerization. This suggests that formaldehyde polymerization is involved in tau aggregation. Such aggregation process is probably linked to the tau's special "worm-like" structure, which leaves the epsilon-amino groups of Lys and thiol groups of Cys exposed to the exterior. Such a structure can easily bond to formaldehyde molecules in vitro and in vivo. Polymerizing of formaldehyde itself results in aggregation of protein tau. Immunocytochemistry and thioflavin S staining of both endogenous and exogenous tau in the presence of formaldehyde at low concentrations in the cell culture have shown that formaldehyde can induce tau into amyloid-like aggregates in vivo during apoptosis. The significant protein tau aggregation induced by formaldehyde and the severe toxicity of the aggregated tau to neural cells may suggest that toxicity of methanol and formaldehyde ingestion is related to tau misfolding and aggregation.  相似文献   

10.
Tauopathies are characterized by abnormal aggregation of the microtubule associated protein tau. This aggregation is thought to occur when tau undergoes shifts from its native conformation to one that exposes hydrophobic areas on separate monomers, allowing contact and subsequent association into oligomers and filaments. Molecular chaperones normally function by binding to exposed hydrophobic stretches on proteins and assisting in their refolding. Chaperones of the heat shock protein 70 (Hsp70) family have been implicated in the prevention of abnormal tau aggregation in adult neurons. Tau exists as six alternatively spliced isoforms, and all six isoforms appear capable of forming the pathological aggregates seen in Alzheimer's disease. Because tau isoforms differ in primary sequence, we sought to determine whether Hsp70 would differentially affect the aggregation and microtubule assembly characteristics of the various tau isoforms. We found that Hsp70 inhibits tau aggregation directly and not through inducer-mediated effects. We also determined that Hsp70 inhibits the aggregation of each individual tau isoform and was more effective at inhibiting the three repeat isoforms. Finally, all tau isoforms robustly induced microtubule formation while in the presence of Hsp70. The results presented herein indicate that Hsp70 affects tau isoform dysfunction while having very little impact on the normal function of tau to mediate microtubule assembly. This indicates that targeting Hsp70 to tau may provide a therapeutic approach for the treatment of tauopathies that avoids disruption of normal tau function.  相似文献   

11.
Gamblin TC  Berry RW  Binder LI 《Biochemistry》2003,42(51):15009-15017
The major antigenic component of neurofibrillary pathology in a large number of neurodegenerative diseases consists of the microtubule-associated protein tau. It is currently unclear how tau protein makes the transition from an important component of the microtubule-based cytoskeleton to an insoluble polymerized state. In vitro techniques have been employed to study the polymerization of tau in an effort to understand the underlying molecular mechanisms responsible for this process. These efforts have resulted in the elucidation of roles played by the different parts of the molecule in the polymerization process. Here we discuss the advantages and disadvantages of the various techniques used to model tau polymerization and the discoveries arising from these techniques that have led to a better structural understanding of tau polymerization in relation to Alzheimer's disease and other tauopathies.  相似文献   

12.
Aggregation or phosphorylation of the microtubule-associated protein tau is the pathological hallmark in a number of diseases termed tauopathies, which include the most common neurodegenerative disorder, Alzheimer’s disease; or frontotemporal dementia, linked to mutations in the gene MAPT encoding tau. Although misfolded tau has strong familial and histopathological (as in intracellular tangles) association with neurodegenerative disorders, the cellular mechanism of tau-induced pathology remains to be controversial. Here we studied the effect of tau on the cytosolic and mitochondrial calcium homeostasis using primary cortical cultures treated with the protein and iPSC-derived neurons bearing the 10 + 16 MAPT mutation linked to frontotemporal dementia. We found that incubation of the primary cortical co-cultures of neurons and astrocytes with tau induced spontaneous Ca2+ oscillations in the neurons, which were also observed in iPSC-neurons with the 10 + 16 MAPT mutation. Importantly, tau inhibited mitochondrial calcium efflux via the mitochondrial Na+/Ca2+ exchanger (NCLX) in both neurons and astrocytes. This inhibition led to mitochondrial depolarisation in response to physiological and pathological calcium stimuli and made these cells vulnerable to calcium-induced caspase 3 activation and cell death. Thus, inhibition of the mitochondrial NCLX in neurons with misfolded or mutated tau can be involved in the mechanism of neurodegeneration.  相似文献   

13.
The role of the VQIVYK peptide in tau protein phosphorylation   总被引:1,自引:0,他引:1  
Although it remains unclear whether they are related to one another, tau aggregation and phosphorylation are the main pathological hallmarks of the neuronal disorders known as tauopathies. The capacity to aggregate is impaired in a variant of the tau 3R isoform that lacks residues 306–311 (nomenclature for the largest CNS tau isoform) and hence, we have taken advantage of this feature to study how phosphorylation and aggregation may be related as well as the role of this six amino acid peptide (VQIVYK). Through these analyses, we found that the phosphorylation of the tau variant was higher than that of the complete tau protein and that not only the deletion of these residues, but also the interaction of these residues, in tau 3R, with thioflavin-S augmented tau phosphorylation by glycogen synthase kinase 3. In addition, the binding of the peptide containing the residues 306–311 to the whole tau protein provoked an increase in tau phosphorylation. This observation could be physiologically relevant as may suggest that tau–tau interactions, through those residues, facilitate tau phosphorylation. In summary, our data indicate that deletion of residues VQIVYK, in tau protein produces an increase in tau phosphorylation, without tau aggregation, because the VQIVYK peptide, that favors aggregation, is missing. On the other hand, when the whole tau protein interacts with thioflavin-S or the peptide VQIVYK, an increase in both aggregation and phosphorylation occurs.  相似文献   

14.
Tauopathies are neurodegenerative diseases, including AD (Alzheimer's disease) and FTLD-T (tau-positive frontotemporal lobar degeneration), with shared pathology presenting as accumulation of detergent-insoluble hyperphosphorylated tau deposits in the central nervous system. The currently available treatments for AD address only some of the symptoms, and do not significantly alter the progression of the disease, namely the development of protein aggregates and loss of functional neurons. The development of effective treatments for various tauopathies will require the identification of common mechanisms of tau neurotoxicity, and pathways that can be modulated to protect against neurodegeneration. Model organisms, such as Caenorhabditis elegans, provide methods for identifying novel genes and pathways that are involved in tau pathology and may be exploited for treatment of various tauopathies. In the present paper, we summarize data regarding characterization of MSUT2 (mammalian suppressor of tau pathology 2), a protein identified in a C. elegans tauopathy model and subsequently shown to modify tau toxicity in mammalian cell culture via the effects on autophagy pathways. MSUT2 represents a potential drug target for prevention of tau-related neurodegeneration.  相似文献   

15.
Transition of protein tau from physiologically unfolded to misfolded state represent enigmatic step in the pathogenesis of tauopathies including Alzheimer’s disease (AD). Major molecular events playing role in this process involve truncation and hyperphosphorylation of tau protein, which are accompanied by redox imbalance followed by functional deterioration of neuronal network. Recently we have developed transgenic rat model showing that expression of truncated tau causes neurofibrillary degeneration similar to that observed in brain of AD sufferers. Consequently we tested cortical and hippocampal neuronal cultures extracted from this model as a convenient tool for development of molecules able to target the mechanisms leading to and/or enhancing the process of neurodegeneration. Here we document three major pathological features typical for tauopathies and AD in cortical and hippocampal neurons from transgenic rat in vitro. First, an increased accumulation of human truncated tau in neurons; second, the hyperphosphorylation of truncated tau on the epitopes characteristic of AD (Ser202/Thr205 and Thr231); and third, increased vulnerability of the neurons to nitrative and oxidative stress. Our results show that primary neurons expressing human truncated tau could represent a cellular model for targeting tau related pathological events, namely, aberrant tau protein accumulation, tau hyperphosphorylation, and oxidative/nitrative damage. These characteristics make the model particularly suitable for detailed study of molecular mechanisms of tau induced neurodegeneration and easily applicable for drug screening.  相似文献   

16.
The abnormal aggregation of tau protein into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease. Aggregation takes place in the cytoplasm and could therefore be cytotoxic for neurons. To find inhibitors of PHF aggregation we screened a library of 200,000 compounds. The hits found in the PHF inhibition assay were also tested for their ability to dissolve preformed PHFs. The results were obtained using a thioflavin S fluorescence assay for the detection and quantification of tau aggregation in solution, a tryptophan fluorescence assay using tryptophan-containing mutants of tau, and confirmed by a pelleting assay and electron microscopy of the products. Here we demonstrate the feasibility of the approach with several compounds from the family of anthraquinones, including emodin, daunorubicin, adriamycin, and others. They were able to inhibit PHF formation with IC50 values of 1-5 microm and to disassemble preformed PHFs at DC50 values of 2-4 microm. The compounds had a similar activity for PHFs made from different tau isoforms and constructs. The compounds did not interfere with the stabilization of microtubules by tau. Tau-inducible neuroblastoma cells showed the formation of tau aggregates and concomitant cytotoxicity, which could be prevented by inhibitors. Thus, small molecule inhibitors could provide a basis for the development of tools for the treatment of tau pathology in AD and other tauopathies.  相似文献   

17.
Tau, a microtubule associated protein, aggregates into intracellular paired helical filaments (PHFs) by an unknown mechanism in Alzheimer's disease (AD) and other tauopathies. A contributing factor may be a failure to metabolize free cytosolic tau within the neuron. The buildup of tau may then drive the aggregation process through mass action. Therefore, proteases that normally degrade tau are of great interest. A recent genetic screen identified puromycin-sensitive aminopeptidase (PSA) as a potent modifier of tau-induced pathology and suggested PSA as a possible tau-degrading enzyme. Here we have extended these observations using human recombinant PSA purified from Escherichia coli. The enzymatic activity and characteristics of the purified PSA were verified using chromogenic substrates, metal ions, and several specific and nonspecific protease inhibitors, including puromycin. PSA was shown to digest recombinant human full-length tau in vitro, and this activity was hindered by puromycin. The mechanism of amino terminal degradation of tau was confirmed using a novel N-terminal cleavage-specific tau antibody (Tau-C6g, specific for cleavage between residues 13-14) and a C-terminal cleavage-specific tau antibody (Tau-C3). Additionally, PSA was able to digest soluble tau purified from normal human brain to a greater extent than either soluble or PHF tau purified from AD brain, indicating that post-translational modifications and/or polymerization of tau may affect its digestion by PSA. These results are consistent with observations that PSA modulates tau levels in vivo and suggest that this enzyme may be involved in tau degradation in human brain.  相似文献   

18.
Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology.  相似文献   

19.
Hyperphosphorylation and aggregation of protein tau are typical for neurodegenerative tauopathies, including Alzheimer's disease (AD). We demonstrate here that human tau expressed in yeast acquired pathological phosphoepitopes, assumed a pathological conformation, and formed aggregates. These processes were modulated by yeast kinases Mds1 and Pho85, orthologues of GSK-3beta and cdk5, respectively. Surprisingly, inactivation of Pho85 increased phosphorylation of tau-4R, concomitant with increased conformational change defined by antibody MC1 and a 40-fold increase in aggregation. Soluble protein tau, purified from yeast lacking PHO85, spontaneously and rapidly formed tau filaments in vitro. Further fractionation of tau by anion-exchange chromatography yielded a hyperphosphorylated monomeric subfraction, termed hP-tau/MC1, with slow electrophoretic mobility and enriched with all major epitopes, including MC1. Isolated hP-tau/MC1 vastly accelerated in vitro aggregation of wild-type tau-4R, demonstrating its functional capacity to initiate aggregation, as well as its structural stability. Combined, this novel yeast model recapitulates hyperphosphorylation, conformation, and aggregation of protein tau, provides insight in molecular changes crucial in tauopathies, offers a source for isolation of modified protein tau, and has potential for identification of modulating compounds and genes.  相似文献   

20.
The accumulation of polymers of the microtubule associated protein tau is correlative with increased neurodegeneration in Alzheimer's disease and other related tauopathies. In vitro models have been developed in order to investigate molecular mechanisms that regulate the polymerization of tau. Arachidonic acid and heparin have been proposed to induce tau polymerization via a ligand dependent nucleation-elongation mechanism. However, certain aspects of these in vitro results are inconsistent with a classic nucleation-elongation mechanism. Using steady state and kinetic analyses of tau polymerization at a variety of protein and inducer concentrations, we have found that the thermodynamic barrier for nucleation in the presence of inducers is negligible, which was manifested by increases in protein polymerization at low tau concentrations and very rapid kinetics of polymerization. However, the mechanism of polymerization is complicated by the observation that high concentrations of inducer molecules result in the inhibition of tau fibril formation through different mechanisms for arachidonic acid and heparin. These observations indicate that the molar ratio of inducer to protein is a greater determinant of the rate and extent of tau polymerization than the concentration of tau itself. Our results are therefore not consistent with a canonical nucleation-elongation reaction but rather are more consistent with an allosteric regulation model in which the presence of small molecules induce a conformational change in the protein that decreases the thermodynamic barrier for polymerization essentially to zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号