首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SNF1/AMP-activated protein kinase (AMPK) family is required for adaptation to metabolic stress and energy homeostasis. The gamma subunit of AMPK binds AMP and ATP, and mutations that affect binding cause human disease. We have here addressed the role of the Snf4 (gamma) subunit in regulating SNF1 protein kinase in response to glucose availability in Saccharomyces cerevisiae. Previous studies of mutant cells lacking Snf4 suggested that Snf4 counteracts autoinhibition by the C-terminal sequence of the Snf1 catalytic subunit but is dispensable for glucose regulation, and AMP does not activate SNF1 in vitro. We first introduced substitutions at sites that, in AMPK, contribute to nucleotide binding and regulation. Mutations at several sites relieved glucose inhibition of SNF1, as judged by catalytic activity, phosphorylation of the activation-loop Thr-210, and growth assays, although analogs of the severe human mutations R531G/Q had little effect. We further showed that alterations of Snf4 residues that interact with the glycogen-binding domain (GBD) of the beta subunit strongly relieved glucose inhibition. Finally, substitutions in the GBD of the Gal83 beta subunit that are predicted to disrupt interactions with Snf4 and also complete deletion of the GBD similarly relieved glucose inhibition of SNF1. Analysis of mutant cells lacking glycogen synthase showed that regulation of SNF1 is normal in the absence of glycogen. These findings reveal novel roles for Snf4 and the GBD in regulation of SNF1.  相似文献   

2.
The SNF1/AMP-activated protein kinases are central energy regulators in eukaryotes. SNF1 of Saccharomyces cerevisiae is inhibited during growth on high levels of glucose and is activated in response to glucose depletion and other stresses. Activation entails phosphorylation of Thr(210) on the activation loop of the catalytic subunit Snf1 by Snf1-activating kinases. We have used mutational analysis to identify Snf1 residues that are important for regulation. Alteration of Tyr(106) in the αC helix or Leu(198) adjacent to the Asp-Phe-Gly motif on the activation loop relieved glucose inhibition of phosphorylation, resulting in phosphorylation of Thr(210) during growth on high levels of glucose. Substitution of Arg for Gly(53), at the N terminus of the kinase domain, increased activation on both high and low glucose. Alteration of the ubiquitin-associated domain revealed a modest autoinhibitory effect. Previous studies identified alterations of the Gal83 (β) and Snf4 (γ) subunits that relieve glucose inhibition, and we have here identified a distinct set of Gal83 residues that are required. Together, these results indicate that alterations at dispersed sites within each subunit of SNF1 cause phosphorylation of the kinase during growth on high levels of glucose. These findings suggest that the conformation of the SNF1 complex is crucial to maintenance of the inactive state during growth on high glucose and that the default state for SNF1 is one in which Thr(210) is phosphorylated and the kinase is active.  相似文献   

3.
Haploid Saccharomyces cerevisiae cells growing on media lacking glucose but containing high concentrations of carbon sources such as fructose, galactose, raffinose, and ethanol exhibit enhanced agar invasion. These carbon sources also promote diploid filamentous growth in response to nitrogen starvation. The enhanced invasive and filamentous growth phenotypes are suppressed by the addition of glucose to the media and require the Snf1 kinase. Mutations in the PGI1 and GND1 genes encoding carbon source utilization enzymes confer enhanced invasive growth that is unaffected by glucose but requires active Snf1. Carbon source does not modulate FLO11 flocculin expression, but enhanced polarized bud site selection is necessary for invasion on certain carbon sources. Interestingly, deletion of SNF1 blocks invasion without affecting bud site selection. Snf1 is also required for formation of spokes and hubs in multicellular mats. To examine glucose repression of invasive growth more broadly, we performed genome-wide microarray expression analysis in wild-type cells growing on glucose and galactose, and snf1 Delta cells on galactose. SNF1 probably mediates glucose repression of multiple genes potentially involved in invasive and filamentous growth. FLO11-independent cell-cell attachment, cell wall integrity, and/or polarized growth are affected by carbon source metabolism. In addition, derepression of cell cycle genes and signalling via the cAMP-PKA pathway appears to depend upon SNF1 activity during growth on galactose.  相似文献   

4.
Mig1和Snf1是酿酒酵母葡萄糖阻遏效应的两个关键调控因子。为了提高酿酒酵母工程菌同时利用葡萄糖和木糖的能力,分别对MIG1和SNF1基因进行了单敲除和双敲除,并通过摇瓶发酵实验和RNA-Seq转录组分析,初步揭示了Mig1和Snf1可能影响葡萄糖和木糖共利用表达差异基因的层级调控机制。研究结果表明,MIG1单敲除对混合糖的共利用影响不大;SNF1单敲除会加快混合糖中木糖的利用而且葡萄糖和木糖可以被同时利用,这可能归因于SNF1单敲除会解除对一些氮分解代谢阻遏基因表达的抑制,从而促进了细胞对氮源营养的利用;进一步敲除MIG1,会解除更多氮分解代谢阻遏基因表达的抑制,以及一些碳中心代谢途径基因表达上调。虽然MIG1和SNF1双敲除菌株利用葡萄糖加快而利用木糖变慢,但是葡萄糖和木糖可以被同时利用,进而加快乙醇的积累。综上所述,MIG1和SNF1的敲除导致氮分解阻遏基因表达上调,有助于促进葡萄糖和木糖的共利用;解析Mig1和Snf1对氮分解阻遏基因的层级调控作用,为进一步提高葡萄糖和木糖的共利用提供新的靶点。  相似文献   

5.
Liu Y  Xu X  Carlson M 《Eukaryotic cell》2011,10(3):313-319
The Saccharomyces cerevisiae SNF1 protein kinase, a member of the SNF1/AMP-activated protein kinase (AMPK) family, is activated by three kinases, Sak1, Tos3, and Elm1, which phosphorylate the Snf1 catalytic subunit on Thr-210 in response to glucose limitation and other stresses. Sak1 is the primary Snf1-activating kinase and is associated with Snf1 in a complex. Here we examine the interaction of Sak1 with SNF1. We report that Sak1 coimmunopurifies with the Snf1 catalytic subunit from extracts of both glucose-replete and glucose-limited cultures and that interaction occurs independently of the phosphorylation state of Snf1 Thr-210, Snf1 catalytic activity, and other SNF1 subunits. Sak1 interacts with the Snf1 kinase domain, and nonconserved sequences C terminal to the Sak1 kinase domain mediate interaction with Snf1 and augment the phosphorylation and activation of Snf1. The Sak1 C terminus is modified in response to glucose depletion, dependent on SNF1 activity. Replacement of the C terminus of Elm1 (or Tos3) with that of Sak1 enhanced the ability of the Elm1 kinase domain to interact with and phosphorylate Snf1. These findings indicate that the C terminus of Sak1 confers its function as the primary Snf1-activating kinase and suggest that the physical association of Sak1 with SNF1 facilitates responses to environmental change.  相似文献   

6.
The trimeric SNF1 complex from Saccharomyces cerevisiae, a homolog of mammalian AMP-activated kinase, has been primarily implicated in signaling for the utilization of alternative carbon sources to glucose. We here find that snf1 deletion mutants are hypersensitive to different cell wall stresses, such as the presence of Calcofluor white, Congo red, Zymolyase or the glucan synthase inhibitor Caspofungin in the growth medium. They also have a thinner cell wall. Caspofungin treatment triggers the phosphorylation of the catalytic Snf1 kinase subunit at Thr210 and removal of this phosphorylation site by mutagenesis (Snf1-T210A) abolishes the function of Snf1 in cell wall integrity. Deletion of the PFK1 gene encoding the α-subunit of the heterooctameric yeast phosphofructokinase suppresses the cell wall phenotypes of a snf1 deletion, which suggests a compensatory effect of central carbohydrate metabolism. Epistasis analyses with mutants in cell wall integrity (CWI) signaling confirm that the SNF1 complex and the CWI pathway independently affect yeast cell integrity.  相似文献   

7.
BACKGROUND: The yeast SNF1 protein kinase and the mammalian AMP-activated protein kinase are highly conserved heterotrimeric complexes that are "metabolic master switches" involved in the switch from fermentative/anaerobic to oxidative metabolism. They are activated by cellular stresses that deplete cellular ATP, and SNF1 is essential in the response to glucose starvation. In both cases, activation requires phosphorylation at a conserved threonine residue within the activation loop of the kinase domain, but identifying the upstream kinase(s) responsible for this has been a challenging, unsolved problem. RESULTS: Using a library of strains that express 119 yeast protein kinases as GST fusions, we identified Elm1p as the sole kinase that could activate the kinase domain of AMP-activated protein kinase in vitro. Elm1p also activated the purified SNF1 complex, and this correlated with phosphorylation of Thr210 in the activation loop. Removal of the C-terminal domain increased the Elm1p kinase activity, indicating that it is auto-inhibitory. Expression of activated, truncated Elm1p from its own promoter gave a constitutive pseudohyphal growth phenotype that was rescued by deletion of SNF1, showing that Snf1p was acting downstream of Elm1p. Deletion of ELM1 does not give an snf- phenotype. However, Elm1p is closely related to Pak1p and Tos3p, and a pak1Delta tos3Delta elm1Delta triple mutant had an snf1- phenotype, i.e., it would not grow on raffinose and did not display hyperphosphorylation of the SNF1 target, Mig1p, in response to glucose starvation. CONCLUSIONS: Elm1p, Pak1p, and Tos3p are upstream kinases for the SNF1 complex that have partially redundant functions.  相似文献   

8.
We isolated from Saccharomyces cerevisiae two mutants, esc1-1 and ESC3-1, in which genes FBP1, ICL1 or GDH2 were partially derepressed during growth in glucose or galactose. The isolation was done starting with a triple mutant pyc1 pyc2 mth1 unable to grow in glucose-ammonium medium and selecting for mutants able to grow in the non-permissive medium. HXT1 and HXT2 which encode glucose transporters were expressed at high glucose concentrations in both esc1-1 and ESC3-1 mutants, while derepression of invertase at low glucose concentrations was impaired. REG1, cloned as a suppressor of ESC3-1, was not allelic to ESC3-1. Two-hybrid analysis showed an increased interaction of the protein kinase Snf1 with Snf4 in the ESC3-1 mutant; this was not due to mutations in SNF1 or SNF4. ESC3-1 did not bypass the requirement of Snf1 for derepression. We hypothesize that ESC3-1 either facilitates activation of Snf1 or interferes with its glucose-dependent inactivation.  相似文献   

9.
The SNF1/AMP-activated protein kinases (AMPKs) function in energy regulation in eukaryotic cells. SNF1/AMPKs are αβγ heterotrimers that are activated by phosphorylation of the activation loop Thr on the catalytic subunit. Protein kinases that activate SNF1/AMPK have been identified, but the protein phosphatases responsible for dephosphorylation of the activation loop are less well defined. For Saccharomyces cerevisiae SNF1/AMPK, Reg1-Glc7 protein phosphatase 1 and Sit4 type 2A-related phosphatase function together to dephosphorylate Thr-210 on the Snf1 catalytic subunit during growth on high concentrations of glucose; reg1Δ and sit4Δ single mutations do not impair dephosphorylation when inappropriate glycogen synthesis, also caused by these mutations, is blocked. We here present evidence that Ptc1 protein phosphatase 2C also has a role in dephosphorylation of Snf1 Thr-210 in vivo. The sit4Δ ptc1Δ mutant exhibited partial defects in regulation of the phosphorylation state of Snf1. The reg1Δ ptc1Δ mutant was viable only when expressing mutant Snf1 proteins with reduced kinase activity, and Thr-210 phosphorylation of the mutant SNF1 heterotrimers was substantially elevated during growth on high glucose. This evidence, together with findings on the reg1Δ sit4Δ mutant, indicates that although Reg1-Glc7 plays the major role, all three phosphatases contribute to maintenance of the Snf1 activation loop in the dephosphorylated state during growth on high glucose. Ptc1 has overlapping functions with Reg1-Glc7 and Sit4 in glucose regulation of SNF1/AMPK and cell viability.  相似文献   

10.
SNF4基因编码的Snf4p具有调节Snf1复合体的蛋白激酶活性功能,根据已知的SNF4基因序列设计引物扩增获得S.cerevisiae YS2的SNF4基因完整序列。序列分析表明,SNF4基因的开放阅读框为969bp,编码322个氨基酸残基。应用生物信息方法预测其理化性质、疏水性、信号肽、亚细胞定位、活性位点及其高级结构。结果表明:Snf4p为具有一定亲水性的非跨膜胞内稳定酸性蛋白,功能结构域为CBS_pair superfamily结构域,二级结构主要由a-螺旋组成,空间结构是由4个CBS结构域构成两个CBS对围绕形成的二聚体。Snf4p的第一个CBS对区域的β片层结构是Snf1p、Sip2p的β发夹结构结合作用区。  相似文献   

11.
AMP-activated protein kinase (AMPK) is a master metabolic regulator for controlling cellular energy homeostasis. Its homolog in yeast, SNF1, is activated in response to glucose depletion and other stresses. The catalytic (α) subunit of AMPK/SNF1, Snf1 in yeast, contains a protein Ser/Thr kinase domain (KD), an auto-inhibitory domain (AID), and a region that mediates interactions with the two regulatory (β and γ) subunits. Previous studies suggested that Snf1 contains an additional segment, a regulatory sequence (RS, corresponding to residues 392-518), which may also have an important role in regulating the activity of the enzyme. The crystal structure of the heterotrimer core of Saccharomyces cerevisiae SNF1 showed interactions between a part of the RS (residues 460-498) and the γ subunit Snf4. Here we report biochemical and functional studies on the regulation of SNF1 by the RS. GST pulldown experiments demonstrate strong and direct interactions between residues 450-500 of the RS and the heterotrimer core, and single-site mutations in the RS-Snf4 interface can greatly reduce these interactions in vitro. On the other hand, functional studies appear to show only small effects of the RS-Snf4 interactions on the activity of SNF1 in vivo. This suggests that residues 450-500 may be constitutively associated with Snf4, and the remaining segments of the RS, as well as the AID, may be involved in regulating SNF1 activity.  相似文献   

12.
13.
14.
We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase–deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase–dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low.  相似文献   

15.
Physiological studies of Saccharomyces cerevisiae strains harboring the MEL1 gene were carried out in aerobic batch cultivations on glucose-galactose mixtures and on the disaccharide melibiose, which is hydrolyzed by the enzyme melibiase (Mel1, EC 3.2.1.22) into a glucose and a galactose moiety. The strains examined (T200, T256, M24, and TH1) were all derived from the bakers' and distillers' strain of S. cerevisiae, DGI 342. All the strains showed a significant higher ethanol yield when growing on glucose, and half the biomass yield, compared with growth on galactose. The maximum specific uptake rates were 2.5-3.3-fold higher on glucose than on galactose for all the strains examined, and hence, ethanol production was pronounced on glucose due to respiro-fermentative metabolism. The T256 strain and the T200 strain having the MEL1 gene inserted in the HXK2 locus and the LEU2 locus, respectively, hydrolyzed melibiose with low specific hydrolysis rates of 0.03 C-mol/g/h and 0.04 C-mol/g/h, respectively. This resulted in high biomass yields on melibiose in the order of 10 g/C-mol compared with 3.7 g/C-mol for M24 and 1.6 g/C-mol for TH1. The M24 strain, constructed by classical breeding, and the mig1/gal80 disrupted and melibiase-producing strain TH1, were superior in their ability to hydrolyze melibiose into glucose and galactose showing specific melibiose hydrolysis rates of 0.17 C-mol/g/h and 0.24 C-mol/g/h, respectively. Hence, high ethanol yields on melibiose were obtained with these two strains. Growth on the glucose-galactose mixtures showed a reduction of glucose control successfully obtained in the M24 strain and the TH1 strain.  相似文献   

16.
17.
Expression of the lactose-galactose regulon in Kluyveromyces lactis is induced by lactose or galactose and repressed by glucose. Some components of the induction and glucose repression pathways have been identified but many remain unknown. We examined the role of the SNF1 (KlSNF1) and MIG1 (KlMIG1) genes in the induction and repression pathways. Our data show that full induction of the regulon requires SNF1; partial induction occurs in a Klsnf1 -deleted strain, indicating that a KlSNF1 -independent pathway(s) also regulates induction. MIG1 is required for full glucose repression of the regulon, but there must be a KlMIG1 -independent repression pathway also. The KlMig1 protein appears to act downstream of the KlSnf1 protein in the glucose repression pathway. Most importantly, the KlSnf1-KIMig repression pathway operates by modulating KlGAL1 expression. Regulating KlGAL1 expression in this manner enables the cell to switch the regulon off in the presence of glucose. Overall, our data show that, while the Snf1 and Mig1 proteins play similar roles in regulating the galactose regulon in Saccharomyces cerevisiae and K.lactis , the way in which these proteins are integrated into the regulatory circuits are unique to each regulon, as is the degree to which each regulon is controlled by the two proteins.  相似文献   

18.
19.
Snf1 protein kinase regulates responses to glucose limitation and other stresses. Snf1 activation requires phosphorylation of its T-loop threonine by partially redundant upstream kinases (Sak1, Tos3, and Elm1). Under favorable conditions, Snf1 is turned off by Reg1-Glc7 protein phosphatase. The reg1 mutation causes increased Snf1 activation and slow growth. To identify new components of the Snf1 pathway, we searched for mutations that, like snf1, suppress reg1 for the slow-growth phenotype. In addition to mutations in genes encoding known pathway components (SNF1, SNF4, and SAK1), we recovered "fast" mutations, designated fst1 and fst2. Unusual morphology of the mutants in the Σ1278b strains employed here helped us identify fst1 and fst2 as mutations in the RasGAP genes IRA1 and IRA2. Cells lacking Ira1, Ira2, or Bcy1, the negative regulatory subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA), exhibited reduced Snf1 pathway activation. Conversely, Snf1 activation was elevated in cells lacking the Gpr1 sugar receptor, which contributes to PKA signaling. We show that the Snf1-activating kinase Sak1 is phosphorylated in vivo on a conserved serine (Ser1074) within an ideal PKA motif. However, this phosphorylation alone appears to play only a modest role in regulation, and Sak1 is not the only relevant target of the PKA pathway. Collectively, our results suggest that PKA, which integrates multiple regulatory inputs, could contribute to Snf1 regulation under various conditions via a complex mechanism. Our results also support the view that, like its mammalian counterpart, AMP-activated protein kinase (AMPK), yeast Snf1 participates in metabolic checkpoint control that coordinates growth with nutrient availability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号