首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M A Garcia  E F Graham 《Cryobiology》1987,24(5):446-454
The effect of the removal of the low-molecular-weight fraction (LMWF, less than 12,000-14,000 Da) from the seminal plasma present in extended semen by dialysis and by centrifugation (1,376g for 20 min at 5 degrees C) were compared with the current methods of freezing bovine semen. Significantly higher sperm post-thaw motility (P less than 0.05) was obtained in the dialyzed samples than with the other two methods. The appropriate time and temperature for dialysis of semen was also studied. Semen aliquots were dialyzed (1:50, retentate:dialysate) for 30 min, 1 or 2 hr at 5 degrees C, and during the cooling process from 37 to 5 degrees C over a 2-hr period. Superior sperm motility (P less than 0.05) in prefreeze and post-thawed samples was observed when semen was dialyzed for 1 or 2 hr during the cooling process as compared with that of semen dialyzed at 5 degrees C. A third experiment was conducted to establish the effect of the use of dialysis bags of different molecular weight cutoffs (MWCO) on sperm motility. Semen samples were dialyzed (1:50) during the cooling process in dialysis bags of 1,000, 3,500, 6,000-8,000, 12,000-14,000, 25,000, and 50,000 MWCO. No statistical differences (P greater than 0.05) in sperm post-thaw motility were found after evaluation of the number of cells that passed through the Sephadex filter and all the dialyzed values obtained were significantly (P less than 0.05) superior to the results obtained with no dialysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
M A Garcia  E F Graham 《Cryobiology》1987,24(5):429-436
The effects of the dialyzable fractions from bovine seminal plasma, egg yolk, and milk and of two buffer systems (TEST and sodium citrate) on post-thaw sperm motility were studied. Each basic salt solution was used in the experimental design. These solutions were used as extender systems in combination with egg yolk and glycerol. After collection, semen samples were extended (1:20), cooled to 5 degrees C in 1.5 hr, and frozen in 0.5-cc French straws after 3 hr of equilibration. Post-thaw samples were assayed for percentage of motile cells immediately after thawing and after 4 hr of incubation at room temperature (22 degrees C). Egg yolk (25%) provided the same protection as did the combination of colloidal material present in the skim milk-yolk extenders. The use of TEST as a buffer provided significantly higher (P less than 0.01) sperm post-thaw motility than milk salts or Na citrate. Sperm survival in extenders containing high concentrations of seminal plasma and/or egg yolk salts was significantly lower (P less than 0.01). Spermatozoa frozen in the presence of 6% glycerol resulted in sperm motility significantly (P less than 0.05) higher than that of spermatozoa frozen with 3% glycerol. However, no difference was observed between these two concentrations when TEST solution was used.  相似文献   

3.
Rasul Z  Ahmed N  Anzar M 《Theriogenology》2007,68(5):813-819
The objective of the present study was to investigate the synergistic effect of DMSO and glycerol added at various temperatures on the post-thaw quality of buffalo sperm. Pooled ejaculates from four Nili-Ravi buffalo bulls were divided into 18 aliquots and extended (1:10) in Tris-citric acid extender differing in glycerol:DMSO ratios (0:0, 0:1.5, 0:3; 3:0, 3:1.5, 3:3; and 6:0, 6:1.5, 6:3, respectively; %, v:v) either at 37 or 4 degrees C. Semen was packaged in 0.5 mL French straws and frozen in a programmable cell freezer. Thawing was performed at 37 degrees C for 50s. Post-thaw motion characteristics, plasma membrane integrity and acrosome morphology of buffalo sperm were determined using computer-assisted semen analyzer (CASA), hypoosmotic swelling (HOS) assay and phase-contrast microscopy, respectively. Glycerol (6%) in extender yielded better post-thaw sperm motility, velocities (straight-line and average path), plasma membrane integrity, and normal acrosomes (P<0.05). Post-thaw sperm motility and plasma membrane integrity declined in the presence of DMSO (P<0.01). The addition of glycerol (6%) at 37 degrees C yielded better post-thaw sperm motility, plasma membrane integrity and velocities than addition at 4 degrees C (P<0.05). In conclusion, glycerol is still an essential cryoprotectant for buffalo sperm. The addition of DMSO antagonized the cryoprotection ability of glycerol and reduced the post-thaw quality of buffalo sperm. Furthermore, 6% glycerol added at 37 degrees C, provided better cryoprotection to the motility apparatus and plasma membrane integrity of buffalo sperm.  相似文献   

4.
Using a two-step extension methodology, two experiments were conducted using a split-sample design to compare the effect on post-thaw ram sperm parameters of a milk-based extender (Experiment 1) containing four different egg yolk concentrations (5% [M5], 10% [M10], 15% [M15], and 20% [M20]), and a commercially available extender (Bioexcell); IMV, L'Aigle, France) free from additives of animal origin, containing two different final glycerol concentrations (3.2% [B] and 6.4% [BB]) (Experiment 2). In both experiments, glycerol was added either at 5 degrees C or at 15 degrees C together with the second fraction of each extender. The sperm characteristics assessed were motility (measured subjectively [SM] and by means of cell motion analysis (CASA), membrane integrity (SYBR-14/PI), and capacitation status (chlortetracycline (CTC)/EthD-1). Results of Experiment 1 showed no significant positive effect of increasing the concentration of egg yolk above 10% on post-thaw motility, membrane integrity, or induction of sperm capacitation-like changes. In Experiment 2, Bioexcell (BB) yielded similar post-thaw results as did the milk extender (control). In both experiments, post-thaw sperm parameters were better preserved when glycerol was added at 5 degrees C, although the results were not always statistically significant for all variables studied. In conclusion, when using milk-based extenders for freezing ram semen, low (5-10%) concentrations of egg yolk and the addition of glycerol at 5 degrees C are recommended. Furthermore, the results indicate that when freezing ram semen, Bioexcell containing 6.4% glycerol may be used as an alternative extender to the conventional milk extender containing 5% egg yolk.  相似文献   

5.
We investigated the use of duck egg yolk (DEY), Guinea fowl egg yolk (GFEY) and Indian indigenous hen (Desi) egg yolk (IDEY) in extender for improving the post-thaw quality of buffalo (Bubalus bubalis) bull spermatozoa, and compared it with commercial hen egg yolk (CHEY; control). For this purpose, two consecutive ejaculates of semen from each of two Nili-Ravi buffalo bulls were collected on 1 day each week for 5 weeks (replicates; n=5) with artificial vagina (42 degrees C). Split pooled ejaculates, were diluted in tris-citric acid glycerol extender containing either DEY or GFEY or IDEY or CHEY at 37 degrees C. Extended semen was cooled to 4 degrees C in 2 h and equilibrated for 4 h at 4 degrees C. Cooled semen was then filled in 0.5 ml straws at 4 degrees C and frozen in programmable cell freezer. Thawing of semen was performed at 37 degrees C for 30 s. Sperm motility, plasma membrane integrity and sperm morphology (acrosome integrity, head, mid-piece and tail abnormalities) of each semen sample were assessed at 0, 3 and 6 h after thawing and incubation at 37 degrees C. Visual motility (%) and percentage of intact plasma membranes assessed at 6h post-thaw of buffalo bull spermatozoa were highest (P<0.05) due to DEY as compared to GFEY, IDEY and control. The percentage of spermatozoa with normal acrosomes at 0, 3 and 6 h post-thaw was highest (P<0.05) in DEY extender than GFEY, IDEY and CHEY. Sperm tail abnormalities (%) observed at 0, 3 and 6 h post-thaw in samples cryopreserved with freezing extender having DEY were lower (P<0.05) as compared to extender containing GFEY, IDEY and CHEY. In conclusion, DEY compared to other avian yolks in extender improves the frozen-thawed quality of buffalo bull spermatozoa.  相似文献   

6.
Seminal plasma is generally removed from equine spermatozoa prior to cryopreservation. Two experiments were designed to determine if adding seminal plasma back to spermatozoa, prior to cryopreservation, would benefit the spermatozoa. Experiment 1 determined if different concentrations of seminal plasma affected post-thaw sperm motility, viability and acrosomal integrity of frozen/thawed stallion spermatozoa. Semen was washed through 15% Percoll to remove seminal plasma and spermatozoa resuspended to 350 x 10(6)sperm/mL in a clear Hepes buffered diluent containing either 0, 5, 10, 20, 40 or 80% seminal plasma for 15 min, prior to being diluted to a final concentration of 50 x 10(6)sperm/mL in a Lactose-EDTA freezing diluent and cryopreserved. Sperm motility was analyzed at 10 and 90 min after thawing, while sperm viability and acrosomal integrity were analyzed 20 min after thawing. Seminal plasma did not affect sperm motility, viability or acrosomal integrity (P>0.05). Experiment 2 tested the main affects of seminal plasma level (5 or 20%), incubation temperature (5 or 20 degrees C) and incubation time (2, 4 or 6 h) prior to cryopreservation. In this experiment, spermatozoa were incubated with 5 or 20% seminal plasma for up to 6h at either 5 or 20 degrees C prior to cryopreservation in a skim milk, egg yolk freezing extender. Samples cooled immediately to 5 degrees C, prior to freezing had higher percentages of progressively motile spermatozoa than treatments incubated at 20 degrees C (31 versus 25%, respectively; P<0.05), when analyzed 10 min after thawing. At 90 min post-thaw, total motility was higher for samples incubated at 5 degrees C (42%) compared to 20 degrees C (35%; P<0.05). In addition, samples containing 5% seminal plasma had higher percentages of total and progressively motile spermatozoa (45 and 15%) than samples exposed to 20% seminal plasma (33 and 9%; P<0.05). In conclusion, although the short-term exposure of sperm to seminal plasma had no significant effect on the motility of cryopreserved equine spermatozoa, prolonged exposure to seminal plasma, prior to cryopreservation, was deleterious.  相似文献   

7.
Tuli RK  Holtz W 《Theriogenology》1994,42(3):547-555
Forty ejaculates (20 for each of 2 experiments) were collected from 4 Boer goat bucks at weekly intervals to study the effect of glycerolization procedure and removal of seminal plasma on progressive motility, percent live spermatozoa and release of glutamic oxaloacetic transaminase (GOT) before and after the freezing of semen. Stepwise glycerolization at 37 degrees C gave higher progressive motility and percentage of live spermatozoa both before freezing and after thawing than onestep glyceroliza-tion at 37 degrees C or stepwise extension with glycerol being added after cooling to 5 degrees C. The GOT-release was reduced before freezing and after thawing of semen with stepwise glycerolization (P < 0.05). Progressive motility and the percentage of live spermatozoa were higher (P < 0.05) after the freezing of whole semen than in washed spermatozoa. The concentration of GOT in the extra-cellular fluid was lower in washed spermatozoa prior to freezing (P < 0,05); but after thawing, the washed spermatozoa released more GOT than spermatozoa in whole semen. Removal of seminal plasma prior to freezing spermatozoa in an extender containing egg yolk had an unfavorable effect on their post-thaw motility and integrity.  相似文献   

8.
Aboagla EM  Terada T 《Theriogenology》2004,62(6):1160-1172
Four experiments were conducted to investigate the effects of egg yolk during the freezing step of cryopreservation (namely, the process except for the cooling step), on the viability of goat spermatozoa. The effects of egg yolk on sperm motility and acrosome integrity during the freezing step were investigated in Experiment 1. Spermatozoa diluted with Tris-citric acid-glucose (TCG) solution containing 20% (v/v) egg yolk were cooled to 5 degrees C, washed, and then frozen in TCG with egg yolk (TCG-Y), TCG without egg yolk (TGG-NY), 0.370 M trehalose with egg yolk (TH-Y), or trehalose without egg yolk (TH-NY). All extenders contained glycerol. In frozen-thawed spermatozoa, the inclusion of egg yolk in the freezing extenders increased (P<0.05) percentages of motile sperm, progressively motile sperm, and the recovery rate (ratio of post-thaw to pre-freeze values), but decreased (P<0.05) acrosomal integrity. Moreover, extenders with trehalose had better (P<0.05) post-thaw sperm viability. In Experiment 2, the effects of egg yolk on acrosome status before and after freezing were studied. Egg yolk significantly decreased the proportion of intact acrosomes before freezing, leading to fewer (P<0.05) intact acrosomes post-thaw and lower (P<0.05) recovery rates for intact acrosomes. In Experiment 3, including sodium dodecyl sulfate (SDS) in a diluent containing egg yolk tended to preserve the acrosome compared with the egg yolk containing diluent free of SDS, however, spermatozoa had a lower (P<0.05) proportion of intact acrosomes than those in a yolk-free diluent. However, after cooling, spermatozoa were diluted with a glycerolated extender containing egg yolk. Therefore, the objective of Experiment 4 was to explore whether the egg yolk or glycerol was responsible for the reduced intact acrosome percentage. In this experiment, after cooling and washing the spermatozoa were diluted in TCG with glycerol and/or egg yolk. The combination of glycerol and egg yolk in the extender reduced (P<0.05) the proportion of intact acrosomes compared with egg yolk or glycerol alone. In conclusion, the inclusion of egg yolk significantly improved sperm motility, indicating its beneficial effects during the freezing step of cryopreservation; trehalose appeared to synergistically increase its cryoprotective effects. Furthermore, although neither glycerol nor egg yolk per se affected the proportion of intact acrosomes, the combination of the two significantly reduced the proportion of acrosome-intact spermatozoa.  相似文献   

9.
This study was carried out to investigate if the substitution of chicken egg yolk (CEY) with duck egg yolk (DEY) in extenders can improve the quality of frozen-thawed semen of Nili-Ravi buffalo bulls and to study if reducing DEY level in extender affects the freezability results. Thirty semen samples collected from three buffalo bulls were diluted in extenders A, B, C, D and E containing tris, citric acid, fructose, egg yolk, glycerol and antibiotics. Extender A contained 20% CEY (control), while extenders B, C, D and E contained 5, 10, 15 and 20% DEY, respectively. After freezing and storage for 24h in liquid nitrogen, samples were evaluated for post-thaw quality. The post extension sperm motility did not differ between extenders A (control) and E (20% DEY). The same was true for post-thaw percentage of sperm with functional plasma membrane and percentage of sperm with abnormal heads or mid pieces. However, extender E showed higher (P<0.05) values for post-thaw sperm motility, livability and absolute index of livability of spermatozoa at 37 °C compared to extender A. Spermatozoa with abnormal tail were lower (P<0.05) in extender E compared to extender A. Values of these parameters of post-thaw semen quality were highest for extender E containing 20% DEY and decreased significantly with decrease in the concentration of DEY, except sperm abnormalities (head, mid-piece and tail) which increased with decrease in DEY level. These results showed that replacement of 20% CEY with 20% DEY in extenders significantly improved post-thaw sperm motility, livability and absolute index of livability of spermatozoa and reduced tail abnormalities. Reduction in the level of DEY in extenders from 20% adversely affected post-thaw semen quality of Nili-Ravi buffalo bulls.  相似文献   

10.
Two experiments were conducted to determine the effects of egg yolk (EY), glycerol, and cooling rate on the cryosurvival of red deer epididymal spermatozoa. The aim of Experiment 1 was to examine the effects of two EY types (clarified EY, CE, prepared by centrifugation, and whole EY, WE), and four EY concentrations (0, 5, 10 and 20%) on cryosurvival of red deer epididymal spermatozoa. Sperm samples were diluted to a final sperm concentration of approximately 200 x 10(6)spermatozoa/ml with a Tris-citrate-fructose-EY extender (TCF) prior to freezing. Sperm cryosurvival was judged in vitro by microscopic assessments of individual sperm motility, viability and of plasma membrane (by means of the HOS test) and acrosome (NAR) integrities. Cryopreservation of red deer epididymal spermatozoa frozen in a clarified EY extender, and with a 20% EY resulted in more vigorous post-thaw and post-incubation motilities (P<0.0001). Moreover, our results showed that regardless of the egg yolk concentration tested, the best sperm quality was obtained with the use of CE. Therefore, the objective of Experiment 2 was to explore the post-thaw effects of four clarified egg yolk concentrations (0, 5, 10 and 20%), two final glycerol concentrations (3 and 6%), and two cooling rates from 22 to 5 degrees C (slow: 0.23 degrees C/min; rapid: 4.2 degrees C/min) on red deer epididymal spermatozoa. At thawing, the effects of CE and glycerol concentrations, and cooling rate, all independently affected post-thaw sperm quality, while there were no effects of interactions on post-thawing sperm quality. Therefore, we studied each variable separately. Differences (P<0.05) for most of the semen parameters evaluated were found between the two final glycerol concentrations tested, with the high values after thawing found with the use of 6% glycerol (58.8+/-1.4 versus 46.2+/-1.4, for sperm motility). Moreover, the cooling rate did not have an effect on the semen characteristics, except for NAR (P<0.05), with the high values after thawing found with the use of the rapid protocol (64.5+/-1.4 versus 59.9+/-1.4). In conclusion, the use of 20% CE and 6% glycerol in combination with a rapid cooling rate, significantly improved red deer epididymal spermatozoa freezability.  相似文献   

11.
The objective of the present study was to evaluate the effect of sperm dilution (one part semen:one part extender or at 200 x 10(6) spermatozoa/mL) using a coconut water extender on the post-thaw sperm quality. Twelve ejaculates were collected from six dogs. Semen was divided into two aliquots, one for dilution one part semen:one part extender (group 1) and another for a concentration of 200 x 10(6) spermatozoa/mL (group 2). Semen was initially extended at 37 degrees C at a proportion of one part semen:half part extender (1:1/2) for group 1 (A-fraction). For group 2, the volume for a concentration of 200 x 10(6) spermatozoa/mL was calculated and a half of this volume was used for the initial dilution (A-fraction, 37 degrees C). Coconut water extender containing 20% egg yolk was used for this initial dilution in both groups. After dilution, the semen was cooled for 40 min in a thermal box (15 degrees C) and for 30 min in a refrigerator. The other half of the extender (B-fraction) containing egg yolk and glycerol (12%) was added to semen in both groups. Subsequently, the final concentration of glycerol in the extender was 6%. Ejaculates were frozen in 0.25 mL straws 5 cm above the surface of liquid nitrogen and stored at -196 degrees C. After 1 week, straws were thawed at 37 degrees C for 1 min and the microscopic criteria were evaluated. The dilution method had no influence on sperm motility, vigor and normal spermatozoa (71.4 compared with 67.7%). There was no effect of dog, ejaculate within male on post-thaw semen quality. Moreover, there was not a male x treatment interaction. Both treatments were efficient in preserving sperm quality.  相似文献   

12.
In the procedure used in this paper, semen was first diluted in INRA82+2% egg yolk (E1) at 37 degrees C. Before or after cooling to 4 degrees C, semen was centrifuged and diluted in E1+2.5% glycerol (E2). Cooled semen was frozen in 0.5-ml straws. Straws were thawed at 37 degrees C for 30s. For fertility trials, frozen ejaculates were used only if total post-thaw motility was above 35%. Most mares were inseminated two times before ovulation with 400 x 10(6) total spermatozoa every 24h. This paper presents post-thaw motility (CASA) and fertility results obtained when some steps of the procedure were evaluated.Use of the first three jets of ejaculate before the centrifugation did not improve post-thaw motility compared to use of the whole semen (25% versus 25%, 2 stallions x 12 ejaculates, P>0.80). When the first dilution was performed in E2 at 22 degrees C instead of in E1 at 37 degrees C, motility was slightly improved (38% versus 36%, n>283 ejaculates per group, P<0.04) but fertility was similar (51% versus 58%, n>196 cycles per group, P>0.10). Coating the spermatozoa with 0.5, 1, 2, 4 and 8mM of Concanavalin A resulted in unchanged post-thaw motility (6 stallions x 3 ejaculates, P>0.05). The extender E2 was modified or supplemented with different substances. Increasing egg yolk concentration from 2 to 4% (v/v) did not increase post-thaw motility (42% versus 34%, 6 stallions x 2 ejaculates, P>0.05). Different glycerol concentrations (range: 1.7-3.7%) had no significant effect on post-thaw motility even though 2.4-2.8% resulted in a nonsignificant higher motility (7 stallions x 2 ejaculates, P>0.05). Glutamine at 50mM in E2 improved post-thaw motility compared with no glutamine (49% versus 46%, n>584 ejaculates per group, P<0.0001) but not fertility (53% versus 54%, n>451 cycles per group, P>0.80). Thawing at 75 degrees C for 10s slightly increased motility after 120 min at 37 degrees C (6 stallions x 1 ejaculate, P<0.05) but no effect on per-cycle fertility was noted (32% (19 cycles) versus 41% (17 cycles), P>0.50). When post-thaw dilution was performed using a fixed molarity multi-step system (25 mOsm per step) from various osmolarities (900-690 mOsm) to 365 mOsm, motility was unaffected compared with dilution in one step (36% versus 38%, 6 stallions x 1 ejaculate, P>0.20).  相似文献   

13.
The aims of this study were to evaluate the effects of cooling rate to 4 degrees C and temperature at the time of centrifugation/glycerol-addition (freezing extender: INRA82 + 2% egg yolk + 2.5% glycerol) on postcentrifugation recovery rate, post-thaw motility and per-cycle fertility. When centrifugation/glycerol-addition was performed at 4 degrees C (14 ejaculates), a moderate cooling rate (37 degrees C to 4 degrees C in I h) resulted in higher post-thaw motility (45%) than when using a slow cooling rate (37 degrees C to 4 degrees C in 4 h) (39%; P<0.05). When centrifugation/glycerol-addition was performed at 22 degrees C (37 degrees C to 22 degrees C in 10 min) (10 ejaculates), post-thaw motility was lower when spermatozoa were frozen directly from 22 degrees C (23%) than when spermatozoa were cooled to 4 degrees C (22 degrees C to 4 degrees C in 1 h) before freezing (47%; P<0.0001). When centrifugation/glycerol-addition was performed at 22 degrees C (before cooling at a moderate rate), as opposed to 4 degrees C (after cooling at a moderate rate), a significant improvement of 1) recovery of spermatozoa after centrifugation (P<0,0001), 2) post-thaw motility of spermatozoa at thawing (40% vs 36% (n < or = 291 ejaculates/group), P<0.0001) and 3) per-cycle fertility (56% vs 42% (n > or = 190 cycles/group), P<0.01) was observed. In conclusion, centrifugation/glycerol-addition at 22 degrees C followed by cooling to 4 degrees C at a moderate rate results in an improvement of post-thaw motility, spermatozoa recovery rate and per cycle fertility.  相似文献   

14.
Cryoinjury in ram sperm was investigated by direct observation, using cryomicroscopy, to validate model hypotheses of freezing injury in such a specialized cell. Fluorescein diacetate was used to determine when during the freeze-thaw cycle the sperm membrane became permeable. In noncryoprotected sperm plasma membrane, integrity was maintained throughout the cooling and freezing process, but fluorescein leakage occurred during rewarming. The temperature of post-thaw permeabilization varied in relation to the minimum temperature reached during freezing; cells cooled to -10 degrees C retained fluorescence into the post-thaw temperature range of 9-24 degrees C (mean +/- SEM; 13.25 +/- 0.91 degrees C), whereas cells cooled to -20 degrees C lost fluorescence shortly after thawing (mean +/- SEM; 2.62 +/- 0.91 degrees C). Sperm cooled to 5 degrees C, but not frozen, retained fluorescence during rewarming up to 20-30 degrees C. The inclusion of glycerol and egg yolk in the freezing medium significantly and independently increased the post-thaw permeabilization temperature. Maintenance of fluorescence was also correlated with ability to resume motility after thawing. Sperm reactivation experiments were undertaken to examine deleterious effects of freezing upon the flagellar microtubular assembly. No direct evidence for such effects was obtained. Instead, a highly significant correlation between minimum freezing temperature and post-thaw temperature of initial reactivation was detected.  相似文献   

15.
Three experiments were conducted to evaluate the effects of egg yolk and(or) glycerol added to a nonfat dried skim milk-glucose (NDSMG) extender on motion characteristics and fertility of stallion spermatozoa. In Experiment 1, ejaculates from each of 8 stallions were exposed to each of 4 extender treatments: 1) NDSMG, 2) NDSMG + 4% egg yolk (EY), 3) NDSMG + 4% glycerol (GL), and 4) NDSMG + 4% egg yolk + 4% glycerol (EY + GL). Samples were cooled at -0.7 degrees C/min from 37 to 20 degrees C; subsamples were then cooled at -0.05 or -0.5 degrees C/min from 20 to 5 degrees C. Percentages of motile spermatozoa (MOT) and progressively motile spermatozoa (PMOT) were determined at 6, 24 and 48 h after initiation of cooling. There was no overall effect (P > 0.05) of cooling rate. PMOT was highest (P < 0.05) for spermatozoa extended in NDSMG + GL at 48 h. At 24 and 48 h, MOT and PMOT were lowest (P < 0.05) for spermatozoa extended in NDSMG + EY. In Experiment 2, ejaculates from 8 stallions were exposed to each of 4 treatments: 1) NDSMG, 2) NDSMG + EY, 3) semen centrifuged in NDSMG and resuspended in NDSMG, and 4) semen centrifuged in NDSMG and resuspended in NDSMG + EY. Samples were cooled from 20 to 5 degrees C at each of 2 rates (-0.05, -0.5 degrees C/min). A detrimental interaction between seminal plasma and egg yolk was noted for PMOT at 6 h and for both MOT and PMOT at > or = 24 h postcooling. Experiment 3 determined if egg yolk or glycerol affected fertility. The seminal treatments were 1) NDSMG, 2) NDSMG + EY with previous removal of seminal plasma, and 3) NDSMG + GL. All samples were cooled to 5 degrees C and stored 24 h before insemination. Embryo recovery rates 7 d after ovulation were lower for mares inseminated with spermatozoa cooled in NDSMG + EY (17%, 4/24) or NDSMG + GL (13%, 3/24) extenders, than semen cooled in NDSMG (50%, 12/24). We concluded that egg yolk (with seminal plasma removal) or glycerol added to NDSMG extender did not depress MOT or PMOT of cooled stallion spermatozoa but adversely affected fertility.  相似文献   

16.
We tested the protective action of seminal plasma on epididymal spermatozoa from Iberian red deer, especially considering cryopreservation, as a means for germplasm banking improvement. We obtained seminal plasma by centrifuging electroejaculated semen, and part of it was thermically inactivated (denatured plasma; 55 degrees C 30 min). Epididymal samples (always at 5 degrees C) were obtained from genitalia harvested after regulated hunting, and pooled for each assay (five in total). We tested three seminal plasma treatments (mixing seminal plasma with samples 2:1): no plasma, untreated plasma and denatured plasma; and four incubation treatments: 32 degrees C 15 min, 5 degrees C 15 min, 5 degrees C 2h and 5 degrees C 6h. After each incubation, samples were diluted 1:1 with extender: Tes-Tris-Fructose, 10% egg yolk, 4% glycerol; equilibrated for 2h at 5 degrees C, extended down to 10(8) spz./mL and frozen. Sperm quality was evaluated before 1:1 dilution, before freezing and after thawing the samples, assessing motility (CASA) and viability (percentage of viable and acrosome-intact spermatozoa; PI/PNA-FITC and fluorescent microscopy). Plasma treatment, both untreated and denatured, rendered higher viability before freezing and higher results for most parameters after thawing. The improvement was irrespective of incubation treatment, except for viability, which rendered slightly different results for untreated and denatured plasma. This may be due to the presence of thermolabile components. We still have to determine the underlying mechanisms involved in this protection. These results might help to improve the design of cryopreservation extenders for red deer epididymal sperm.  相似文献   

17.
Reproduction in captive elephants is low and infant mortality is high, collectively leading to possible population extinction. Artificial insemination was developed a decade ago; however, it relies on fresh-chilled semen from just a handful of bulls with inconsistent sperm quality. Artificial insemination with frozen–thawed sperm has never been described, probably, in part, due to low semen quality after cryopreservation. The present study was designed with the aim of finding a reliable semen freezing protocol. Screening tests included freezing semen with varying concentrations of ethylene glycol, propylene glycol, trehalose, dimethyl sulfoxide and glycerol as cryoprotectants and assessing cushioned centrifugation, rapid chilling to suprazero temperatures, freezing extender osmolarity, egg yolk concentration, post-thaw dilution with cryoprotectant-free BC solution and the addition of 10% (v/v) of autologous seminal plasma. The resulting optimal freezing protocol uses cushioned centrifugation, two-step dilution with isothermal 285 m Osm/kg Berliner Cryomedium (BC) with final glycerol concentration of 7% and 16% egg yolk, and freezing in large volume by the directional freezing technique. After thawing, samples are diluted 1:1 with BC solution. Using this protocol, post-thaw evaluations results were: motility upon thawing: 57.2 ± 5.4%, motility following 30 min incubation at 37 °C: 58.5 ± 6.0% and following 3 h incubation: 21.7 ± 7.6%, intact acrosome: 57.1 ± 5.2%, normal morphology: 52.0 ± 5.8% and viability: 67.3 ± 6.1%. With this protocol, good quality semen can be accumulated for future use in artificial inseminations when and where needed.  相似文献   

18.
Five experiments evaluated the effects of processing, freezing and thawing techniques on post-thaw motility of equine sperm. Post-thaw motility was similar for sperm frozen using two cooling rates. Inclusion of 4% glycerol extender was superior to 2 or 6%. Thawing in 75 degrees C water for 7 sec was superior to thawing in 37 degrees C water for 30 sec. The best procedure for concentrating sperm, based on sperm motility, was diluting semen to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium at 20 degrees C and centrifuging at 400 x g for 15 min. There was no difference in sperm motility between semen cooled slowly in extender with or without glycerol to 5 degrees C prior to freezing to -120 degrees C and semen cooled continuously from 20 degrees C to -120 degrees C. From these experiments, a new procedure for processing, freezing and thawing semen evolved. The new procedure involved dilution of semen to 50 x 10(6) sperm/ml in centrifugation medium and centrifugation at 400 x g for 15 min, resuspension of sperm in lactose-EDTA-egg yolk extender containing 4% glycerol, packaging in 0.5-ml polyvinyl chloride straws, freezing at 10 degrees C/min from 20 degrees C to -15 degrees C and 25 degrees C/min from -15 degrees C to -120 degrees C, storage at -196 degrees C, and thawing at 75 degrees C for 7 sec. Post-thaw motility of sperm averaged 34% for the new method as compared to 22% for the old method (P<0.01).  相似文献   

19.
Whole ejaculate or sperm-rich fraction, collected from four sexually mature boars, was frozen in an extender containing lactose-hen egg yolk with glycerol (lactose-HEY-G) or extender containing lactose, lyophilized lipoprotein fractions isolated from ostrich egg yolk and glycerol (lactose-LPFo-G), and Orvus Es Paste, respectively. The sperm samples were also frozen in a standard boar semen extender (Kortowo-3), without the addition of cryoprotective substances. Sperm DNA integrity was assessed using a modified neutral comet assay. Sperm characteristics such as motility, plasma membrane integrity (SYBR-14/PI), mitochondrial function (rhodamine 123) and acrosome integrity were monitored. Freezing-thawing caused a significant increase (P<0.05) in sperm DNA fragmentation, irrespective of the procedures of ejaculate collection and extender type. Sperm DNA fragmentation was significantly lower (P<0.05) in the whole ejaculate compared with the sperm-rich fraction, indicating that spermatozoa maintained in the whole seminal plasma prior to its removal for freezing-thawing procedure were less vulnerable to cryo-induced DNA fragmentation. Furthermore, spermatozoa frozen in lactose-HEY-G or lactose-LPFo-G extender exhibited lower (P<0.05) DNA fragmentation than those frozen in the absence of cryoprotective substances. The levels of sperm DNA damage, as expressed by comet tail length and tail moment values, were significantly higher (P<0.05) in sperm samples frozen in the absence of cryoprotective substances. The deterioration in post-thaw sperm DNA integrity was concurrent with reduced sperm characteristics. It can be suggested that evaluation of DNA integrity, coupled with different sperm characteristics such as motility, plasma membrane integrity and mitochondrial function, may aid in determining the quality of frozen-thawed boar semen.  相似文献   

20.
The aims of this study were to find out if dog spermatozoa can be stored chilled for 1 or 2 days prior to freezing without a deterioration in post-thaw vitality and longevity, and to compare two extenders; the Uppsala Equex-2 (UE-2) and a TRIS egg yolk extender (EYT). Pooled dog semen was frozen immediately after collection, or was extended and stored at 4 degrees C for 1 or 2 days before freezing. Sperm motility and acrosome integrity were evaluated before freezing and for 6h post thaw at 38 degrees C, while sperm plasma membrane integrity was evaluated post thaw. There were no effects of pre-freeze storage time or extender on post-thaw motility or plasma membrane integrity, but a significant effect of extender (P < 0.0153) on post-thaw acrosomal integrity was found, UE-2 being better than EYT. There was a significant (P < 0.0001) negative effect of post-thaw storage time on acrosome integrity, but this was not influenced by pre-freeze storage time or extender. In conclusion, we found that dog spermatozoa can be frozen after 1 or 2 days of cold storage without significant deterioration in post-thaw motility, acrosome integrity or sperm plasma membrane integrity compared to when frozen immediately after collection. The UE-2 extender was superior to the EYT extender for freezing of cold stored dog spermatozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号