首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Natural polyamines putrescine, spermidine and spermine are ubiquitous cellular components. Recent studies showed that these compounds are capable of provoking a conformational transition in poly(dG-m5dC).poly(dG-m5dC) from its usual right-handed B-DNA form to a left-handed Z-DNA form at physiologically relevant cationic concentrations. We studied the efficacy of spermidine, six homologs of spermidine (H2N(CH2)nNH(CH2)3NH2, where n = 2 to 8 (n = 4 for spermidine)) and diethylene triamine to provoke the B-DNA to Z-DNA transition of poly(dG-m5dC).poly(dG-m5dC) using a monoclonal anti-Z-DNA antibody and spectroscopic techniques. The concentration of spermidine at the midpoint of B-DNA to Z-DNA transition was 30 +/- 1 microM. Chemical structural effects were significant when the spermidine homologs were used to induce the transition. The midpoint concentration increased as the number of -CH2 groups varied in relation to that of spermidine. We interpret these structural effects on the basis of molecular models of the interaction of polyamines with polynucleotides.  相似文献   

2.
We examined the rate of deoxyribonucleic acid (DNA) replication fork movement in polyamine-deficient cells of Escherichia coli by two independent techniques. DNA autoradiography was used to directly visualize the length of DNA produced during a given time interval, and replication rates were calculated. The amount of DNA synthesized after blocking protein synthesis also allowed calculation of replication rates. We found that the DNA chain elongation rate in polyamine-deficient cells was about half that of putrescine- or spermidine-supplemented cells. We also found that spermidine homologs of increasing chain length, when present at equal intracellular concentrations, exhibited a decreasing ability to support growth and the rate of DNA replication fork movement. The kinetics of recovery of DNA synthesis from the polyamine-deficient state were also investigated. A new rate of DNA synthesis was reached about 20 min after addition of spermidine to polyamine-limited cells. The rise in the rate of DNA synthesis was preceded by a rise in the intracellular concentration of spermidine.  相似文献   

3.
Single-stranded oligoribonucleotides containing UA and CA phosphodiester bonds can be hydrolyzed specifically under non-enzymatic conditions in the presence of spermidine, a biogenic amine found in a wide variety of organisms. In the present study, the rate of oligonucleotide and tRNA(i)(Met)hydrolysis was measured in the presence of spermidine and other biogenic amines. It was found that spermine [H(3)N(+)(CH(2))(3)(+)NH(2)(CH(2))(4)(+)NH(2)(CH(2))(3)(+)NH(3)] and putrescine [H(3)N(+)(CH(2))(4)(+)NH(3)] can replace spermidine [H(3)N(+)-(CH(2))(4)(+)NH(2)(CH(2))(3)(+)NH(3)] to induce the hydrolysis. For all three polyamines, a bell-shaped cleavage rate versus concentration relationship was observed. The maximum rate of hydrolysis was achieved at 0.1, 1.0 and 10 mM spermine, spermidine and putrescine, respectively. Moreover, we found that the hydrolysis requires at least two linked amino groups since two aminoalcohols, 2-aminoethanol and 3-aminopropanol, were not able to induce the cleavage of the phospho-diester bond. The optimal cleavage rate of the oligo-ribonucleotides was observed when amino groups were separated by tri- or tetramethylene linkers. The methylation of the amino groups reduced the ability of diamines to induce oligoribonucleotide hydrolysis. Non-enzymatic cleavage of tRNA(i)(Met)from Lupinus luteus and tRNA(i)(Met)from Escherichia coli demonstrate that both RNAs hydrolyze as expected from principles derived from oligoribonucleotide models.  相似文献   

4.
T Antony  T Thomas  A Shirahata  T J Thomas 《Biochemistry》1999,38(33):10775-10784
RNA-DNA hybrid stabilization is an important factor in the efficacy of oligonucleotide-based antisense gene therapy. We studied the ability of natural polyamines, putrescine, spermidine, and spermine, and a series of their structural analogues to stabilize RNA-DNA hybrids using melting temperature (Tm) measurements, circular dichroism (CD) spectroscopy, and the ethidium bromide (EB) displacement assay. Phosphodiester (PO) and phosphorothioate (PS) oligodeoxyribonucleotides (ODNs) (21-mer) targeted to the initiation codon region of c-myc mRNA and the corresponding complementary RNA oligomer were used for this study. In the absence of polyamines, the Tm values of RNA-PODNA and RNA-PSDNA helices were 41 +/- 1 and 35 +/- 1 degrees C, respectively, in 10 mM sodium cacodylate buffer. In the presence of a hexamine analogue of spermine at a concentration of 25 microM, the hybrids were stabilized with Tm values of 80 and 78 degrees C, for RNA-PODNA and RNA-PSDNA, respectively. The d(Tm)/d(log[polyamine]) values, representing the concentration-dependent stabilization of hybrid helices by polyamines, increased from 10 to 24 for both the RNA-PODNA and RNA-PSDNA helices. Bisethyl substitution of the primary amino groups of the polyamines reduced the hybrid stabilizing potential of the polyamines. Among the homologues of spermidine [H2N(CH2)3NH(CH2)nNH2, where n = 2-8; n = 4 for spermidine] and spermine [H)N(CH2)3NH(CH2)nNH(CH2)3NH2, where n = 2-8; n = 4 for spermine], spermidine and spermine were the most effective agents for stabilizing the hybrid helices. At a physiologically compatible concentration of 150 mM NaCl, the hybrid helix formed from PODNA was more stable than that formed from PSDNA in the presence of polyamines. CD spectroscopic studies showed that the hybrids were stabilized in a conformation close to A-DNA in the presence of polyamines. The relative binding affinity of the polyamine homologues for the hybrid helices, as measured by the EB displacement assay, followed the same order in which they stabilized the hybrids. These results are important in the antisense context and in the general context of polyamine-nucleic acid interactions, and suggest that pentamine and hexamine analogues of spermine might be useful in improving the efficacy of therapeutic ODNs.  相似文献   

5.
We synthesized seven homologs of spermine (H2N(CH2)3NH(CH2)nNH(CH2)3NH2, where n = 2-9; n = 4 for spermine) and studied their effects on melting temperature (Tm), conformation, and precipitation of poly(dA).2poly(dT). The triplex DNA melting temperature, Tm1 was 34.4 degrees C in the presence of 150 mM KCl. Addition of spermine homologs increased Tm1 in a concentration-dependent and structure-dependent manner, with 3-6-3 (n = 6) exerting optimal stabilization. The dTm1/dlog[polyamine] values were 9-24 for these compounds. The duplex melting temperature, Tm2 was insensitive to homolog concentration and structure, suggesting their ability to stabilize triplex DNA without altering the stability of the underlying duplex. Circular dichroism spectral studies revealed psi-DNA formation in a concentration-dependent and structure-dependent manner. Phase diagrams were constructed showing the critical ionic/polyamine concentrations stabilizing different structures. These compounds also exerted structural specificity effects on precipitating triplex DNA. These data provide new insights into the ionic/structural determinants affecting triplex DNA stability and indicate that 3-6-3 is an excellent ligand to stabilize poly(dA).2poly(dT) triplex DNA under physiologic ionic conditions for antigene therapeutics.  相似文献   

6.
Four homologues of the naturally occurring polyamine spermine, of the type H(2)N.[CH(2)](3).NH.[CH(2)] (n).NH.[CH(2)](3).NH(2) where n=2, 3, 5 and 6, have been synthesized. Their ability to stabilize Escherichia coli protoplasts against osmotic lysis was compared with that of spermine. All homologues were approximately as effective as spermine. The effect of low concentrations of the homologues on the T(m) of calf thymus DNA and of Aerobacter aerogenes DNA in 0.03m-sodium chloride-1mm-potassium dimethylglutarate buffer, pH6.2, was tested. The increase in T(m) for a given concentration of amine was found to be n=5>n=4 and n=6> n=3>n=2. When calf thymus DNA in 0.15m-sodium chloride-15mm-sodium citrate was used spermine gave the highest increase in T(m). It is concluded that the stabilization of E. coli protoplasts by tetra-amines is a non-specific effect independent of chain length, whereas the elevation of T(m) of DNA is a more specific effect which depends on chain length.  相似文献   

7.
NH4(+)-transport in Anabaena 7120 was studied using the NH4+ analogue, 14CH3NH3+. At pH 7, two energy-dependent NH4(+)-transport systems were detected in both N2- and NO3(-)-grown cells, but none in NH4(+)-grown cells. Both transport systems showed a low and a high affinity mode of operation depending on the substrate concentration. One of the transport systems showed Km values of 8 microM (Vmax = 1 nmole min-1mg-1protein) and 80 microM (Vmax = 7 nmole min-1mg-1protein), and was insensitive to L-methionine-DL-sulphoximine, a glutamate analogue and irreversible inhibitor of glutamine synthetase. The other transport system showed Km values of 2.5 microM (Vmax = 0.1 nmole min-1mg-1protein) and 70 microM (Vmax = 0.7 nmole min-1mg-1protein), and was sensitive to L-methionine-DL-sulphoximine. Intracellular accumulation of free 14CH3NH3+ showed a biphasic pattern in response to variation in external 14CH3NH3+ concentrations. A maximum intracellular concentration of 2.5 mM and 7.5 mM was reached in the external 14CH3NH3+ concentration range of 1-50 microM and 1-500 microM, respectively. At pH 9, an energy-independent diffusion of 14CH3NH2 leading to a higher intracellular accumulation and assimilation rate, than that at pH 7, was observed.  相似文献   

8.
Polyamines such as spermidine and spermine are abundant in living cells and are believed to aid in the dense packaging of cellular DNA. DNA condensation is a prerequisite for the transport of gene vectors in living cells. To elucidate the structural features of polyamines governing DNA condensation, we studied the collapse of lambda-DNA by spermine and a series of its homologues, H2N(CH2)3NH(CH2)n=2-12NH(CH2)3NH2 (n = 4 for spermine), using static and dynamic light scattering techniques. All polyamines provoked DNA condensation; however, their efficacy varied with the structural geometry of the polyamine. In 10 mM sodium cacodylate buffer, the EC50 values for DNA condensation were comparable (4 +/- 1 microM) for spermine homologues with n = 4-8, whereas the lower and higher homologues provoked DNA condensation at higher EC50 values. The EC50 values increased with an increase in the monovalent ion (Na+) concentration in the buffer. The slope of a plot of log [EC50(polyamine4+)] against log [Na+] was approximately 1.5 for polyamines with even number values of n, whereas the slope value was approximately 1 for compounds with odd number values of n. Dynamic light scattering measurements showed the presence of compact particles with hydrodynamic radii (Rh) of about 40-50 nm for compounds with n = 3-6. Rh increased with further increase in methylene chain length separating the secondary amino groups of the polyamines (Rh = 60-70 nm for n = 7-10 and >100 nm for n = 11 and 12). Determination of the relative binding affinity of polyamines to DNA using an ethidium bromide displacement assay showed that homologues with n = 2 and 3 as well as those with n > 7 had significantly lower DNA binding affinity compared to spermine and homologues with n = 5 and 6. These data suggest that the chemical structure of isovalent polyamines exerts a profound influence on their ability to recognize and condense DNA, and on the size of the DNA condensates formed in aqueous solution.  相似文献   

9.
Polyamine-DNA interactions. Condensation of chromatin and naked DNA   总被引:2,自引:0,他引:2  
We have used flow linear dichroism (LD) and light scattering at 90 degrees to study the condensation of both DNA and calf thymus chromatin by polyamines, such as spermine, spermidine and its analogs designated by formula NH3+(CH2)iNH2+(CH2)jNH3+, where i = 2,3 and j = 2,3, putrescine, cadaverine and MgCl2. It has been found that the different polyamines affect DNA and chromatin in a similar way. The level of compaction of the chromatin fibers induced by spermine, spermidine and the triamines NH3+(CH2)3NH2+(CH2)3NH3+ and NH3+(CH2)3NH2+(CH2)2NH3+ and MgCl2 is found to be identical. The triamine NH3+(CH2)3NH2+(CH2)2NH3+ and the diamines studied condense neither chromatin nor DNA. This drastic difference in the action of the triamines indicates that not only the charge, but also the structure of the polycations might play essential roles in their interactions with DNA and chromatin. It is shown that a mixture of mono- and multivalent cations affect DNA and chromatin condensation competitively, but not synergistically, as claimed in a recent report by Sen and Crothers (Biochemistry 25, 1495-1503, 1986). We have also estimated the extent of negative charge neutralization produced by some of the polyamines on their binding to chromatin fibers. The stoichiometry of polyamine binding at which condensation of chromatin is completed is found to be two polyamine molecules per DNA turn. The extent of neutralization of the DNA phosphates by the histones in these compact fibers is estimated to be about 55%. The model of polyamine interaction with chromatin is discussed.  相似文献   

10.
11.
A mutant of Escherichia coli with reduced levels of biosynthetic arginine decarboxylase was isolated which required putrescine or spermidine for optimal growth. The stimulation of growth by putrescine was 1.5- to 3-fold depending upon the culture medium. Specificity studies supported the concept that the requirement was for spermidine or closely related polyamines, or for diamines which could be converted enzymatically to these compounds. The behavior of the macromolecular composition of the polyamine-starved cells appeared abnormal. The ribonucleic acid to protein and deoxyribonucleic acid to cell ratios in the starved cells were both higher than expected on the basis of their growth rate. The stable ribonucleic acid in the polyamine-limited cells appeared to be normal as judged from size distribution and degree of methylation. The relationship of these results to mechanisms for regulation of nucleic acid and protein synthesis in E. coli is discussed.  相似文献   

12.
Light-harvesting antenna core (LH1-RC) complexes isolated from Rhodoseudomonas palustris were self-assembled on a gold electrode modified with self-assembled monolayers (SAMs) of the alkanethiols NH2(CH2)nSH, n = 2, 6, 8, 11; HOOC(CH2)7SH; and CH3(CH2)7SH, respectively. Adsorption of the LH1-RC complexes on the SAMs depended on the terminating group of the alkanethiols, where the adsoption increased in the following order for the terminating groups: amino groups > carboxylic acid groups > methyl groups. Further, the adsorption on a gold electrode modified with SAMs of NH2(CH2)nSH, n = 2, 6, 8, 11, depended on the methylene chain length, where the adsorption increased with increasing the methylene chain length. The presence of the well-known light-harvesting and reaction center peaks of the near infrared (NIR) absorption spectra of the LH1-RC complexes indicated that these complexes were only fully stable on the SAM gold electrodes modified with the amino group. In the case of modification with the carboxyl group, the complexes were partially stable, while in the presence of the terminal methyl group the complexes were extensively denatured. An efficient photocurrent response of these complexes on the SAMs of NH2(CH2)nSH, n = 2, 6, 8, 11, was observed upon illumination at 880 nm. The photocurrent depended on the methylene chain length (n), where the maximum photocurrent response was observed at n = 6, which corresponds to a distance between the amino terminal group in NH2(CH2)6SH and the gold surface of 1.0 nm.  相似文献   

13.
Clostridium pasteurianum exhibits diauxic growth when grown in the presence of both NH(3) and N(2); no nitrogenase activity or formation was detected either serologically or by activity during growth on NH(3). During the 60-min lag that ensued after NH(3) was consumed and before growth resumed, molybdoferredoxin and azoferredoxin were first detected by activity measurements and serologically at 25 and 40 min, respectively. With the use of rifampin and dactinomycin, it was found that azoferredoxin messenger ribonucleic acid was initiated between 25 and 30 min after the inception of the lag and was completed by 38 min. An explanation of these results and their relation to possible models for the regulation of nitrogenase is given.  相似文献   

14.
Enzymatic studies of the cell extracts of Vibrio alginolyticus and V. parahaemolyticus provided evidence that there exists a novel biosynthetic pathway for norspermidine (NH2(CH2)3NH(CH2)3NH2), a major polyamine species. In this pathway, the Schiff base formed between aspartic beta-semialdehyde and 1,3-diaminopropane is first reduced by a NADPH-dependent enzyme to yield "carboxynorspermidine" (NH2(CH2)3NH(CH2)2CH(NH2)COOH), which is in turn decarboxylated by a pyridoxal phosphate dependent enzyme to form norspermidine. The end product and its intermediate were identified by gas chromatography - mass spectrometry. Experiments with L-[U-14C]aspartic acid resulted in appreciable incorporation of the label into norspermidine. Putrescine could replace 1,3-diaminopropane as a substrate to produce spermidine, but at a reduced rate. The enzyme activity was greatly enhanced by dithiothreitol. Since the activity of an aminopropyltransferase that utilizes decarboxylated S-adenosylmethionine as an aminopropyl group donor could not be detected in any of the cell extracts by our assay method, it was concluded that this novel pathway is primarily responsible for producing norspermidine and spermidine in these species.  相似文献   

15.
The rates of synthesis of beta-galactosidase (EC 3.2.1.23) and the intracellular levels of cyclic 3',5'-adenosine monophosphate (cAMP) soon after the addition of glucose or glycerol to exponentially growing cultures of Escherichia coli have been determined. Within 10 s of its addition, glucose, but not glycerol, lowered the apparent initiation frequency of lac messenger ribonucleic acid. The glucose-generated reduction in initiations is identified as catabolite repression by its reversibility with cAMP. The intracellular cAMP levels respond virtually identically to glucose and glycerol additions. Thus, no correlation was observed between the rate of messenger ribonucleic acid initiation and the level of cAMP.  相似文献   

16.
Summary Cod (Gadus morhua) of 50 g body weight were kept at 14°C. The fish were fed ad libitum during 80 days a diet containing protein levels which in terms of total energy corresponded to 25%, 45% or 65%. Growth increased in accordance with protein-energy levels. The protein content per gram of wet weight of white trunk muscle was unchanged, as was the myofibrillar protein myosin heavy chain determined by the antigen-antibody reaction of the enzyme-linked immunosorbent assay. The amount of messenger ribonucleic acid (mRNA) coding for myosin heavy chain was lower at 25% than at 45% or 65% protein-energy intake, the differences being significant per gram of wet weight of muscle. Acid proteinase activity was highest at the lowest protein-energy intake. Glycogen content in muscle increased with the protein-energy levels. It is concluded that the metabolic response of white trunk muscle to graded protein-energy intake included a change in the capacity to synthesize myosin heavy chain as judged by its mRNA content. The protein content per gram of wet weight was unaffected by dietary protein-energy levels of 25%, 45% and 65%, but protein accretion and thus growth of the animals increased with the protein intake. Dietary protein-energy restriction caused a rise in acid proteinase activity and a decrease in content of mRNA for myosin heavy chain, resulting in a diminished growth rate at an unchanged protein content per gram of wet weight of muscle.Abbreviations CTP cytidine triphosphate - DNA desoxyribonucleic acid - EDTA ethylenediaminetetra-acetic acid - mRNA messenger ribonucleic acid - TRIS tris(hydroxymethyl)aminomethane  相似文献   

17.
18.
M J Holland  J P Holland 《Biochemistry》1978,17(23):4900-4907
Yeast poly(adenylic acid)-containing messenger ribonucleic acid isolated from two strains of Saccharomyces cerevisiae was fractionated by preparative polyacrylamide gel electrophoresis in the presence of formamide. Three messenger ribonucleic acids, present at high intracellular concentration, were electrophoretically eluted from the polyacrylamide gels and translated in a wheat germ cell-free extract. The in vitro synthesized polypeptides were identified by tryptic peptide analysis. Messenger ribonucleic acids coding for enolase and glyceraldehyde-3-phosphate dehydrogenase were isolated from commercially grown baker's yeast (strain F1), and messenger ribonucleic acid coding for phosphoglycerate kinase was isolated from Saccharomyces cerevisiae (ATCC 24657). Significant differences in the spectrum of abundant messenger ribonucleic acids isolated from commercially grown baker's yeast (strain F1) and strain 24657 were observed. When both strains were grown under identical conditions, however, the spectrum of messenger ribonucleic acid isolated from the cells is indistinguishable.  相似文献   

19.
Permeabilities of uncharged ammonia (NH3), methylamine (CH3NH2), and ethylamine (CH3CH2NH2) in the gram-negative phototrophic bacterium Rhodobacter sphaeroides were measured directly in cells grown heterotrophically under aerobic conditions. The permeability of NH3 was 2.55 +/- 0.73 microns s-1 (n = 20), but the permeabilities of CH3NH2 (MA) and CH3CH2NH2 (EA) were higher, PMA = 17.8 +/- 2.8 microns s-1 (n = 50), PEA = 24.7 +/- 3.9 microns s-1 (n = 44). The relative permeabilities of amines were also determined from their effect on the pH gradient across the cell membrane at alkaline external pH. In aerobically grown R. sphaeroides, both techniques indicated that the permeability of CH3CH2NH2 was about 30% greater than that of CH3NH2 but that the permeability of NH3 was only about 1/5 that of CH3NH2. The relative permeabilities of NH3 (A) and CH3NH2 were different in R. sphaeroides cells grown under three different physiological conditions: (a) cells grown aerobically with ammonium sulfate (PA/PMA about 0.20), (b) cells grown anaerobically with ammonium sulfate as their nitrogen source (PA/PMA about 0.29), and (c) diazotrophic cells (PA/PMA about 0.38). NH3 was also found to be only about 1/3 as permeable as CH3NH2 in the alkalophilic gram-positive bacterium Bacillus firmus. The findings that permeability properties of NH3 and CH3NH2 are very different in different bacteria and vary according to the conditions under which the organism is grown need to be taken into account in the interpretation of experiments where [14C]methylamine is used as an ammonia analog.  相似文献   

20.
The pseudopeptide [Leu13-psi(CH2NH)Leu14]bombesin blocks bombesin-stimulated mitogenesis in Swiss 3T3 cells in a competitive and reversible manner, but not that of other mitogens. It inhibits the mobilization of intracellular Ca2+ and activation of protein kinase C by bombesin-like peptides. It acts at receptor level, as shown by inhibition of [125I]GRP binding and reduction in cross-linking of the Mr 75-85,000 receptor-associated protein. Thus [Leu13-psi(CH2NH)Leu14]bombesin is a specific bombesin receptor antagonist in Swiss 3T3 cells which blocks long-term growth promoting effects of bombesin-like peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号