首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fruit flies (Diptera: Tephritidae) harbor stable bacterial communities in their digestive system, composed mainly of members of the Enterobacteriaceae. However, the Enterobacteriaceae are not the sole community in this habitat. We examined the hypothesis that Pseudomonas spp. form a cryptic community in the gut of Ceratitis capitata, the Mediterranean fruit fly (‘medfly’). Suicide polymerase restriction PCR (SuPER PCR), a novel culture-independent technique, revealed that Pseudomonas spp. form minor, common and stable communities within the medfly's gut. These include P. aeruginosa, a known pathogen of arthropods. Experimental inoculations with high levels of P. aeruginosa reduced the medfly's longevity while inoculations with members of the Enterobacteriaceae extended the fly's life.Accordingly, we suggest that in addition to their possible contribution to the fly's nitrogen and carbon metabolism, development and copulatory success (as shown in previous studies), the Enterobacteriaceae community within the medfly's gut may also have an indirect contribution to host fitness by preventing the establishment or proliferation of pathogenic bacteria.  相似文献   

2.
The microbiome of the olive fruit fly, Bactrocera oleae (Gmelin), a worldwide pest of olives (Olea europaea L.), has been examined for >100 yr as part of efforts to identify bacteria that are plant pathogens vectored by the fly or are beneficial endosymbionts essential for the fly's survival and thus targets for possible biological control. Because tephritid fruit flies feed on free-living bacteria in their environment, distinguishing between the transient, acquired bacteria of their diet and persistent, resident bacteria that are vertically transmitted endosymbionts is difficult. Several culture-dependent and -independent studies have identified a diversity of species in the olive fruit fly microbiome, but they have not distinguished the roles of the microbes. Candidatus Erwinia dacicola, has been proposed to be a coevolved endosymbiont of the olive fruit fly; however, this was based on limited samples from two Italian populations. Our study shows that C. Erwinia dacicola was present in all New and Old World populations and in the majority of individuals of all life stages sampled in 2 yr. Olive fruit flies reared on olives in the laboratory had frequencies of C. Erwinia dacicola similar to that of wild populations; however, flies reared on artificial diets containing antibiotics in the laboratory rarely had the endosymbiont. The relative abundance of C. Erwinia dacicola varied across development stages, being most abundant in ovipositing females and larvae. This uniform presence of C. Erwini dacicola suggests that it is a persistent, resident endosymbiont of the olive fruit fly.  相似文献   

3.
The Mediterranean fruit fly (medfly) (Ceratitis capitata) lays eggs in fruits, where larvae subsequently develop, causing large-scale agricultural damage. Within its digestive tract, the fly supports an extended bacterial community that is composed of multiple strains of a variety of enterobacterial species. Most of these bacteria appear to be functionally redundant, with most strains sustaining diazotrophy and/or pectinolysis. At least some of these bacteria were shown to be vertically inherited, but colonization, structural, and metabolic aspects of the community''s dynamics have not been investigated. We used fluorescent in situ hybridization, metabolic profiling, plate cultures, and pyrosequencing to show that an initial, egg-borne, diverse community expands throughout the fly''s life cycle. While keeping “core” diazotrophic and pectinolytic functions, it also harbors diverse and fluctuating populations that express varied metabolic capabilities. We suggest that the metabolic and compositional plasticity of the fly''s microbiota provides potential adaptive advantages to the medfly host and that its acquisition and dynamics are affected by mixed processes that include stochastic effects, host behavior, and molecular barriers.  相似文献   

4.
The Mediterranean fruit fly (Ceratitis capitata) is a cosmopolitan pest of hundreds of species of commercial and wild fruits. It is considered a major economic pest of commercial fruits in the world. Adult Mediterranean fruit flies feed on all sorts of protein sources, including animal excreta, in order to develop eggs. After reaching sexual maturity and copulating, female flies lay eggs in fruit by puncturing the skin with their ovipositors and injecting batches of eggs into the wounds. In view of the increase in food-borne illnesses associated with consumption of fresh produce and unpasteurized fruit juices, we investigated the potential of Mediterranean fruit fly to serve as a vector for transmission of human pathogens to fruits. Addition of green fluorescent protein (GFP)-tagged Escherichia coli to a Mediterranean fruit fly feeding solution resulted in a dose-dependent increase in the fly's bacterial load. Flies exposed to fecal material enriched with GFP-tagged E. coli were similarly contaminated and were capable of transmitting E. coli to intact apples in a cage model system. Washing contaminated apples with tap water did not eliminate the E. coli. Flies inoculated with E. coli harbored the bacteria for up to 7 days following contamination. Fluorescence microscopy demonstrated that the majority of fluorescent bacteria were confined along the pseudotrachea in the labelum edge of the fly proboscis. Wild flies captured at various geographic locations were found to carry coliforms, and in some cases presumptive identification of E. coli was made. These findings support the hypothesis that the common Mediterranean fruit fly is a potential vector of human pathogens to fruits.  相似文献   

5.
Abstract.  Mediterranean fruit flies ( Ceratitis capitata Wiedemann, Diptera: Tephritidae) harbor a community of diazotrophic bacteria in their digestive system. The present study aims to test the hypothesis that bacteria contribute to fly fitness by enhancing copulatory success and egg production in males and females, respectively. After eclosion, flies were fed a full diet containing peptides, sugar and minerals, or a sugar diet, lacking peptides. Subgroups from each diet were fed a mixture of the antibiotics ciprofloxacin and piperacillin. The presence of bacteria, food consumption, weight gain, lipid and protein levels, oviposition in females and copulatory success of males were quantified in the four groups. The antibiotic treatment effectively cleared the gut of bacteria. The relative amounts of food consumed (with or without antibiotics) are similar in all groups. The antibiotics do not inhibit feeding, and their ingestion does not affect dry weight or the amount of protein stored, yet females feeding on the full diet without antibiotics have increased lipid levels. Females fed the full diet produce significantly more eggs than females on the sugar diet, but the presence of bacteria does not affect numbers of eggs produced. However, in the absence of bacteria, the oviposition rate of nutritionally stressed females is significantly accelerated. The presence of bacteria in sugar fed males does not provide them with a mating advantage. Conversely, in males fed a full diet, the presence of bacteria is associated significantly with a shorter latency to mate. It is concluded that, because the bacterial community is present at all stages of the fly's life cycle, at least some species are effectively transmitted from parents to offspring, and removal of bacteria affects measurable physiological and behavioural parameters related to fitness, the association between bacteria and the medfly is mutualistic.  相似文献   

6.
Nitrogen, although abundant in the atmosphere, is paradoxically a limited resource for multicellular organisms. In the Animalia, biological nitrogen fixation has solely been demonstrated in termites. We found that all individuals of field-collected Mediterranean fruit flies (Ceratitis capitata) harbour large diazotrophic enterobacterial populations that express dinitrogen reductase in the gut. Moreover, nitrogen fixation was demonstrated in isolated guts and in live flies and may significantly contribute to the fly's nitrogen intake. The presence of similar bacterial consortia in additional insect orders suggests that nitrogen fixation occurs in vast pools of terrestrial insects. On such a large scale, this phenomenon may have a considerable impact on the nitrogen cycle.  相似文献   

7.
S. Raghu  A. R. Clarke  J. Bradley 《Oikos》2002,97(3):319-328
Insects utilize resources in their environment with the aid of mutualistic or symbiotic mediation by microorganisms. Some insect species such as ants and termites often have complex ecological and evolutionary associations with their symbionts, while the nature and functional significance of such associations in non-social insects is often unclear. In the Dacinae (Diptera: Tephritidae), specific Enterobacteriaceae ( Erwinia herbicola , Enterobacter cloacae , Klebsiella oxytoca ) are believed to mediate interactions between the adult fruit flies and the larval host plant. This bacterial mediation is hypothesized as being integral to the larval host plant being the "centre of activity" of the fly. Using a non-pest, monophagous fruit fly ( Bactrocera cacuminata [Hering]), we tested this hypothesis by manipulating the fruiting state of its larval host plant ( Solanum mauritianum Scopoli) and subsequently assessing insect behaviour and phylloplane microflora on those hosts. On host plants that had never fruited, few flies or bacterial colonies were recorded, consistent with hypothesis expectations. On fruiting host plants or plants that had had their fruit removed, bacterial colonies were present; again consistent with expectation. However, few flies were recorded on fruit-removed plants and all fly behaviours, other than resting or oviposition, were rare or absent on any hosts; inconsistent with expectation. The general pattern of results suggested that female flies coming to oviposit on fruiting hosts were spreading Enterobacteriaceae, but such spread was incidental and not part of some mutualistic interaction between fruit flies and bacteria.  相似文献   

8.
Neurobiology of the fruit fly's circadian clock   总被引:7,自引:0,他引:7  
Studying the fruit fly Drosophila melanogaster has revealed mechanisms underlying circadian clock function. Rhythmic behavior could be assessed to the function of several clock genes that generate circadian oscillations in certain brain neurons, which finally modulate behavior in a circadian manner. This review outlines how individual circadian pacemaker neurons in the fruit fly's brain control rhythm in locomotor activity and eclosion.  相似文献   

9.
Solanum mauritianum Scop, (wild tobacco) fruit is the major host of the fruit fly Dacus cacuminatus (Hering), and is a major source of food for the brown pigeon Macropygia phasianella (Temminck) in eastern Queensland. Amino acid analyses were undertaken on fruit fly infested and uninfested S. mauritianum fruits. Infested fruits contained approximately twice the level of protein and essential amino acids compared to uninfested fruit. This increase is probably due to the plant adding additional amino acids to infested tissue and the accompanying growth of bacteria established in the fruit during oviposition. The infested fruit would provide a valuable source of protein during the pigeon breeding season.  相似文献   

10.
No-choice tests were conducted to determine whether fruit of southern highbush blueberry, Vaccinium corymbosum L., hybrids are hosts for three invasive tephritid fruit flies in Hawaii. Fruit of various blueberry cultivars was exposed to gravid female flies of Bactrocera dorsalis Hendel (oriental fruit fly), Ceratitis capitata (Wiedemann) (Mediterranean fruit fly), or Bactrocera cucurbitae Coquillet (melon fly) in screen cages outdoors for 6 h and then held on sand in the laboratory for 2 wk for pupal development and adult emergence. Each of the 15 blueberry cultivars tested were infested by oriental fruit fly and Mediterranean fruit fly, confirming that these fruit flies will oviposit on blueberry fruit and that blueberry is a suitable host for fly development. However, there was significant cultivar variation in susceptibility to fruit fly infestation. For oriental fruit fly, 'Sapphire' fruit produced an average of 1.42 puparia per g, twice as high as that of the next most susceptible cultivar 'Emerald' (0.70 puparia per g). 'Legacy', 'Biloxi', and 'Spring High' were least susceptible to infestation, producing only 0.20-0.25 oriental fruit fly puparia per g of fruit. For Mediterranean fruit fly, 'Blue Crisp' produced 0.50 puparia per g of fruit, whereas 'Sharpblue' produced only 0.03 puparia per g of fruit. Blueberry was a marginal host for melon fly. This information will aid in development of pest management recommendations for blueberry cultivars as planting of low-chill cultivars expands to areas with subtropical and tropical fruit flies. Planting of fruit fly resistant cultivars may result in lower infestation levels and less crop loss.  相似文献   

11.
The facultative intracellular bacterial pathogen Listeria monocytogenes is capable of replicating within a broad range of host cell types and host species. We report here the establishment of the fruit fly Drosophila melanogaster as a new model host for the exploration of L. monocytogenes pathogenesis and host response to infection. Listeria monocytogenes was capable of establishing lethal infections in adult fruit flies and larvae with extensive bacterial replication occurring before host death. Bacteria were found in the cytosol of insect phagocytic cells, and were capable of directing host cell actin polymerization. Bacterial gene products necessary for intracellular replication and cell-to-cell spread within mammalian cells were similarly found to be required within insect cells, and although previous work has suggested that L. monocytogenes virulence gene expression requires temperatures above 30 degrees C, bacteria within insect cells were found to express virulence determinants at 25 degrees C. Mutant strains of Drosophila that were compromised for innate immune responses demonstrated increased susceptibility to L. monocytogenes infection. These data indicate L. monocytogenes infection of fruit flies shares numerous features of mammalian infection, and thus that Drosophila has the potential to serve as a genetically tractable host system that will facilitate the analysis of host cellular responses to L. monocytogenes infection.  相似文献   

12.
《Fly》2013,7(4):312-319
Folic acid is a vitamin for probably all animals. When converted to folate forms, it is used in DNA synthesis and amino acid metabolism. Literature suggests insects must consume folates, folates do not affect others, is a toxin for some, and that a few insects synthesize it. It has been reported that Drosophila melanogaster does not consistently need dietary folate because it can synthesize it. This seems unlikely since animals generally lack this ability. More likely, folates thought to have been made by the fly came from microbial symbionts. We aimed to clarify how dietary folic acid affects fitness and development in fruit flies and whether flies may receive folates from microbial symbionts. We found larvae were more viable and developed faster with increasing dietary folic acid, with the surprising exception that larvae fed nearly-zero folic acid developed faster. Their body folate levels did not significantly differ from those that consumed up to 600 times more folic acid. However, these flies fed little folate only achieved normal body folate levels and development times when antibiotics were excluded from the diet. When flies consumed near-zero folates with antibiotics, their body folate levels decreased and development was prolonged. An assay for the endosymbiont Wolbachia in flies used to generate the experimental flies did not show presence of these bacteria. Our data suggest D. melanogaster can harbor unknown bacterial symbiont(s) that provide essential folates to their host when it is scarce in the diet, allowing the fruit fly to maintain growth and development.  相似文献   

13.
Background

The interaction between gut bacterial symbionts and Tephritidae became the focus of several studies that showed that bacteria contributed to the nutritional status and the reproductive potential of its fruit fly hosts. Anastrepha fraterculus is an economically important fruit pest in South America. This pest is currently controlled by insecticides, which prompt the development of environmentally friendly methods such as the sterile insect technique (SIT). For SIT to be effective, a deep understanding of the biology and sexual behavior of the target species is needed. Although many studies have contributed in this direction, little is known about the composition and role of A. fraterculus symbiotic bacteria. In this study we tested the hypothesis that gut bacteria contribute to nutritional status and reproductive success of A. fraterculus males.

Results

AB affected the bacterial community of the digestive tract of A. fraterculus, in particular bacteria belonging to the Enterobacteriaceae family, which was the dominant bacterial group in the control flies (i.e., non-treated with AB). AB negatively affected parameters directly related to the mating success of laboratory males and their nutritional status. AB also affected males’ survival under starvation conditions. The effect of AB on the behaviour and nutritional status of the males depended on two additional factors: the origin of the males and the presence of a proteinaceous source in the diet.

Conclusions

Our results suggest that A. fraterculus males gut contain symbiotic organisms that are able to exert a positive contribution on A. fraterculus males’ fitness, although the physiological mechanisms still need further studies.

  相似文献   

14.
Fruit flies have evolved mechanisms using olfactory and visual signals to find and recognize suitable host plants. The objective of the present study was to determine how habitat patterns may assist fruit flies in locating host plants and fruit. The tomato fruit fly, Neoceratitis cyanescens (Bezzi), was chosen as an example of a specialized fruit fly, attacking plants of the Solanaceae family. A series of experiments was conducted in an outdoor field cage wherein flies were released and captured on sticky orange and yellow spheres displayed in pairs within or above potted host or non-host plants. Bright orange spheres mimicking host fruit were significantly more attractive than yellow spheres only when placed within the canopy of host plants and not when either within non-host plants or above both types of plants. Additional experiments combining sets of host and non-host plants in the same cage, or spraying leaf extract of host plant (bug weed) on non-host plants showed that volatile cues emitted by the foliage of host plants may influence the visual response of flies in attracting mature females engaged in a searching behaviour for a laying site and in assisting them to find the host fruit. Moreover, the response was specific to mature females with a high oviposition drive because starved mature females, immature females and males showed no significant preference for orange spheres. Olfactory signals emitted by the host foliage could be an indicator of an appropriate habitat, leading flies to engage in searching for a visual image.  相似文献   

15.
Good culturing methods play an important role in the study of insect behavior and its application to pest management. Here, we describe and validate a new method for rearing the parasitoid wasp, Diachasmimorpha kraussii, which attacks some of the world's worst fruit fly pests and is an internationally used biological control agent. Our method differs from standard culturing approaches by presenting adult wasps with host‐infested artificial media within a “culturing bag,” which mimics a natural (fruit) oviposition substrate. In laboratory trials using wild collected D. kraussii, the culturing bag method was compared to the use of host‐infested nectarines, and a commonly used laboratory method of presenting host‐infested artificial media within Petri dishes. The culturing bag method proved to be a significant improvement on both methods, combining the advantages of high host survival in artificial media with parasitism levels that were the equivalent to those recorded using host‐infested fruits. In our field study, culturing bags infested with the Queensland fruit fly, Bactrocera tryoni, and hung in a mixed peach and nectarine orchard proved to be effective “artificial fruits” attracting wild D. kraussii for oviposition. Significantly more adult wasps were reared from the culturing bags compared to field collected fruits. This was shown to be due to higher fruit fly larval density in the bags, as similar percentage parasitism rates were found between the culturing bags and ripe fruits. We discuss how this cheap, time‐efficient method could be applied to collecting and monitoring wild D. kraussii populations in orchards, and assist in maintaining genetic variability in parasitoid laboratory cultures.  相似文献   

16.
The mosquito midgut is a hostile environment that vector‐borne parasites must survive to be transmitted. Commensal bacteria in the midgut can reduce the ability of mosquitoes to transmit disease, either by having direct anti‐parasite effects or by stimulating basal immune responses of the insect host. As different bacteria have different effects on parasite development, the composition of the bacterial community in the mosquito gut is likely to affect the probability of disease transmission. We investigated the diversity of mosquito gut bacteria in the field using 454 pyrosequencing of 16S rRNA to build up a comprehensive picture of the diversity of gut bacteria in eight mosquito species in this population. We found that mosquito gut typically has a very simple gut microbiota that is dominated by a single bacterial taxon. Although different mosquito species share remarkably similar gut bacteria, individuals in a population are extremely variable and can have little overlap in the bacterial taxa present in their guts. This may be an important factor in causing differences in disease transmission rates within mosquito populations.  相似文献   

17.
The Mediterranean fruit fly (Ceratitis capitata) is a cosmopolitan pest of hundreds of species of commercial and wild fruits. It is considered a major economic pest of commercial fruits in the world. Adult Mediterranean fruit flies feed on all sorts of protein sources, including animal excreta, in order to develop eggs. After reaching sexual maturity and copulating, female flies lay eggs in fruit by puncturing the skin with their ovipositors and injecting batches of eggs into the wounds. In view of the increase in food-borne illnesses associated with consumption of fresh produce and unpasteurized fruit juices, we investigated the potential of Mediterranean fruit fly to serve as a vector for transmission of human pathogens to fruits. Addition of green fluorescent protein (GFP)-tagged Escherichia coli to a Mediterranean fruit fly feeding solution resulted in a dose-dependent increase in the fly's bacterial load. Flies exposed to fecal material enriched with GFP-tagged E. coli were similarly contaminated and were capable of transmitting E. coli to intact apples in a cage model system. Washing contaminated apples with tap water did not eliminate the E. coli. Flies inoculated with E. coli harbored the bacteria for up to 7 days following contamination. Fluorescence microscopy demonstrated that the majority of fluorescent bacteria were confined along the pseudotrachea in the labelum edge of the fly proboscis. Wild flies captured at various geographic locations were found to carry coliforms, and in some cases presumptive identification of E. coli was made. These findings support the hypothesis that the common Mediterranean fruit fly is a potential vector of human pathogens to fruits.  相似文献   

18.
Olfaction in the fruit fly Drosophila melanogaster is increasingly understood, from ligand-receptor-neuron combinations to their axonal projection patterns into the antennal lobe . Drosophila thus offers an excellent opportunity to study the evolutionary and ecological dynamics of olfactory systems. We compared the structure and function of the generalist D. melanogaster with that of specialist D. sechellia, which oviposits exclusively on morinda fruit . Our analyses show that whereas the fruit's headspace was dominated by acids, antennae responded most strongly to hexanoates. D. sechellia exhibited an extraordinarily strong response to methyl hexanoate (MeHex). Behaviorally, D. sechellia was much more attracted to these morinda fruit volatiles than was D. melanogaster. The high sensitivity to MeHex was paralleled by a 2.5x-3 x overrepresentation of MeHex neurons on the antenna and a concordant 2.9 x increase in volume of the corresponding glomerulus as compared to D. melanogaster. In addition, the MeHex neuron exhibited an extreme sensitivity down to femtograms of its ligand. In contrast, no peripherally mediated shift was found paralleling D. sechellia's increased attraction to acids. These findings are a demonstration of evolution acting at several levels in the olfactory circuitry in mediating a fruit fly's unique preference for fruit toxic to its sibling species .  相似文献   

19.
肠杆菌共同抗原(Enterobacterial common antigen,ECA)是由多糖重复单元组成的多聚糖,几乎表达于所有肠杆菌细菌外膜,具有生物学功能。ECA由多基因协同作用而合成,这些基因在肠杆菌细菌基因组上成簇存在,形成ECA抗原基因簇。ECA是重要的毒力因子,在肠杆菌细菌入侵宿主、体内存活等过程中有一定作用。同时,ECA在维持细菌外膜渗透屏障、鞭毛表达、群集运动及抗胆酸胆盐等方面也有重要作用。此外,锚定在细菌脂多糖核心区的ECALPS还是细菌重要的表面抗原,能激发宿主产生高水平抗体,可以作为疫苗研究的靶点。结合笔者的研究,文中对ECA纯化、基因结构和合成、免疫特性、生物学功能及应用等方面进行了综述。  相似文献   

20.
The bacterial communities associated with the development of necroses in injured agria cactus tissue were examined in the field by using both human-induced injuries and cactus tissue inoculated with cactophilic bacteria. Whole-cell bacterial fatty acids were used to determine when and where each of 23 detected species occurred. This information was then used to describe successional patterns of bacterial colonization. Although the number of bacterial species in human-induced injuries reached a maximum on day 16, the Shannon-Weaver diversity index increased to a plateau, which reflects a stable bacterial community. The potential of the bacterial community to macerate the injured cactus tissue was also examined, and the results indicate that the bacteria initially colonizing the newly injured cactus tissue were more likely to contain pectinolytic, proteolytic, and lipolytic enzymes than were the bacteria entering the injuries once tissue maceration had already begun. The cactophilic fruit fly Drosophila mojavensis has been previously shown to carry bacteria to newly injured cactus tissue. In these studies, exclusion of these insects did not significantly affect bacterial succession or community structure. This supports our contention that bacteria colonize injured tissue primarily by passive transport, e.g., on wind-blown particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号