首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To the discussion on secondary succession in tropical forests, we bring data on three under‐addressed issues: understory as well as overstory changes, continuous as opposed to phase changes, and integration of forest succession with indigenous fallow management and plant uses. Changes in vegetation structure and species composition were analyzed in secondary forests following swidden agriculture in a semideciduous forest of Bolivian lowlands. Twenty‐eight fallows, stratified by four successional stages (early = 1–5 yr, intermediate = 6–10 yr, advanced = 12–20 yr, and older = 22–36 yr), and ten stands of mature forests were sampled. The overstory (plants ≥5 cm diameter at breast height [DBH]) was sampled using a 20 × 50 m plot and the understory (plants <5 cm DBH) in three nested 2 × 5 m subplots. Semistructured interviews provided information on fallow management. Canopy height, basal area, and liana density of the overstory increased with secondary forest age. The early stage had the lowest species density and diversity in the overstory, but the highest diversity in the understory. Species composition and abundance differentiated mature forests and early successional stage from other successional stages; however, species showed individualistic responses across the temporal gradient. A total of 123 of 280 species were useful with edible, medicinal, and construction plants being the most abundant for both over‐ and understories. Most of Los Gwarayo preferred mature forests for making new swidden, while fallows were valuable for crops, useful species, and regenerating timber species.  相似文献   

2.
We compared the functional type composition of trees ≥10 cm dbh in eight secondary forest monitoring plots with logged and unlogged mature forest plots in lowland wet forests of Northeastern Costa Rica. Five plant functional types were delimited based on diameter growth rates and canopy height of 293 tree species. Mature forests had significantly higher relative abundance of understory trees and slow-growing canopy/emergent trees, but lower relative abundance of fast-growing canopy/emergent trees than secondary forests. Fast-growing subcanopy and canopy trees reached peak densities early in succession. Density of fast-growing canopy/emergent trees increased during the first 20 yr of succession, whereas basal area continued to increase beyond 40 yr. We also assigned canopy tree species to one of three colonization groups, based on the presence of seedlings, saplings, and trees in four secondary forest plots. Among 93 species evaluated, 68 percent were classified as regenerating pioneers (both trees and regeneration present), whereas only 6 percent were classified as nonregenerating pioneers (trees only) and 26 percent as forest colonizers (regeneration only). Slow-growing trees composed 72 percent of the seedling and sapling regeneration for forest colonizers, whereas fast-growing trees composed 63 percent of the seedlings and saplings of regenerating pioneers. Tree stature and growth rates capture much of the functional variation that appears to drive successional dynamics. Results further suggest strong linkages between functional types defined based on adult height and growth rates of large trees and abundance of seedling and sapling regeneration during secondary succession.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

3.
Since tropical rain forests are widely threatened by conversion to agriculture, even within protected areas, an understanding of recovery processes is important for restoration of forest ecosystems and thus conservation of their biodiversity. Secondary succession following land clearance and crop cultivation was studied in a lower montane rain forest in a protected area of the Venezuelan Cordillera de la Costa Central. Forest recovery was studied using a chronosequence of eight 20 × 20 m plots which represented four forest types ca.10 year-old Secondary Forest, ca. 20 year-old Secondary Forest, ca. 35 year-old (uncultivated) secondary forest and mature forest. Species richness and structural complexity increased during succession, with the oldest secondary forest having a physiognomy comparable to the mature forest. Species diversity was lower in the secondary forests than the mature forest, and their floristic composition was distinct. Four phases are hypothesized to occur in the succession process, each with a distinctive species assemblage: initial colonisation by non-woody vegetation; establishment and canopy closure by short-lived small-seeded woody pioneer species; replacement by longer-lived secondary species; and gradual replacement by mature forest large-seeded climax species. Full recovery of the forests in the protected area is likely to take many years, although it may be assisted through conservation management measures.  相似文献   

4.
Much of the world's tropical forests have been affected by anthropogenic disturbance. These forests are important biodiversity reservoirs whose diversity, structure and function must be characterized across the successional sequence. We examined changes in structure and diversity along a successional gradient in the lowlands of New Guinea. To do this, we measured and identified all stems ≥5 cm diameter in 19 0.25 ha plots ranging in age from 3 to >50 yr since disturbance. We also measured plant functional traits related to establishment, performance, and competitive ability. In addition, we examined change in forest structure, composition, species diversity, and functional diversity through succession. By using rarefaction to estimate functional diversity, we compared changes in functional diversity while controlling for associated differences in stem and species density. Basal area and species density increased with stand age while stem density was highest in intermediate secondary forests. Species composition differed strongly between mature and secondary forests. As forests increased in basal area, community‐weighted mean wood density and foliar carbon increased, whereas specific leaf area and proportion of stems with exudate decreased. Foliar nitrogen peaked in medium‐aged forests. Functional diversity was highest in mature forests, even after accounting for differences in stem and species diversity. Our study represents one of the first attempts to document successional changes in New Guinea's lowland forest. We found robust evidence that as succession proceeds, communities occupy a greater range of functional trait space even after controlling for stem and species density. High functional diversity is important for ecological resiliency in the face of global change.  相似文献   

5.
Species richness, community composition and ecology of cryptogamic epiphytes (bryophytes, macrolichens) were studied in upper montane primary, early secondary and late secondary oak forests of the Cordillera de Talamanca, Costa Rica. Canopy trees of Quercus copeyensis were sampled with the aim of getting insight in patterns and processes of epiphyte succession and recovery of diversity in secondary forest following forest clearing. Species richness of cryptogamic epiphytes in secondary and primary forests were nearly the same, showing that primary forests are not necessarily more diverse than secondary forests. High species richness of secondary forests was presumed due to the closed canopy, resulting in permanently high atmospheric humidity in these forests. Similarity in species composition of secondary and primary forests increases with forest age, but after 40 years of succession one third (46 species) of primary forest species had not re-established in the secondary forest. Community composition in primary and secondary forests differed markedly and indicates that a long time is needed for the re-establishment of microhabitats and re-invasion of species and communities adapted to differentiated niches. Genera and species exclusive to primary forests are relevant as indicator taxa and conservation targets. Forty percent (68 species) of all species recorded are restricted to secondary forests, indicating the important contribution of secondary forest diversity to total species richness of the oak forests of Costa Rica.  相似文献   

6.
Sonali Saha 《Ecography》2003,26(1):80-86
The regressive succession model hypothesizes tropical savanna-woodlands to be a degraded stage of primary deciduous forests. Species diversity, richness and evenness of woody species in savanna-woodlands, secondary deciduous forests and mature deciduous forests of central India were compared to test if the regressive succession explained pattern in species richness, diversity, functional diversity and basal area. At the plot scale (0.1 ha) secondary deciduous forests and savanna-woodlands had similar species diversity, a pattern not consistent with the regressive model of deciduous forest succession, and mature deciduous forests had greater species diversity and richness (p<0.05). When examined at a larger scale or community scale by pooling all plots within a community type, the trend in diversity persisted even with greater effort allocated to sampling of secondary deciduous forests. Species richness at the community scale was greatest in secondary deciduous forest as expected from species area relationship. The communities shared 28 woody species but the species composition was significantly different between the communities. I suggest that conservation of tropical deciduous forests based on regressive succession model is problematic.  相似文献   

7.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   

8.
The relationship between forest succession and microfungal diversity has been poorly studied. Fungi provide important ecosystem services that may deteriorate in deforested or highly disturbed forests. To determine the possible effects of deforestation and forest succession on microfungi, species diversity of hypocrealean fungi (Ascomycota) was compared in forest stands in Eastern Costa Rica representing three stages of succession: 1–2, 25–27 yr old, and an old growth forest. Species diversity in a second‐growth forest fragment surrounded by timber plantations and second‐growth forest was also compared to that of a stand surrounded by old growth forest. The results show that the overall diversity of hypocrealean fungi was inversely proportional to the age of the forest stand, and each family showed different successional trends. Clavicipitaceae was more diverse in the old‐growth forest and was positively related to the age of the forest stand. Nectriaceae was highly diverse in the 1‐ to 2‐yr‐old stand and less diverse in the old‐growth stand. Saprobic and plant pathogenic fungal species were more diverse in the 1‐ to 2‐yr‐old stand and their diversity was inversely proportional to the age of the forest stand. The diversity of insect pathogens was positively related to the age of the forest stand. The 20‐ to 22‐yr‐old forest fragment had the lowest number of species overall. Based on the data gathered in this study, hypocrealean fungal species diversity is related to the successional stage and fragmentation of tropical forest.  相似文献   

9.
The composition of herbaceous vegetation was evaluated with the aim of characterizing forests at various ages of stand development. Herb stems were sampled in 250 4‐m² square plots distributed within six habitat types. A total of 36 herb species belonging to 15 families were recorded. Species richness did not significantly differ between habitat types. Most herb species occurred in all habitat types and were therefore generalists. However, a few indicator herb species were detected, and the results roughly suggested that herb species of the families Poaceae and Araceae were indicative of late successional forests; Zingiberaceae are indicative of early successional forests; and Commelinaceae, Costaceae, Cyperaceae and Marantaceae are indicators of flooded habitats. Species diversity and stem density of herbaceous plants did not change with forest succession as a decrease in abundance and frequency of occurrence of pioneer species in late successional forests was counterbalanced by the presence of generalist and late successional species. However, increasing proportions of dwarf stems in late successional forests translated to changes in the vertical structure of herbaceous plant communities. Herbivory pressure by gorillas did not have a notable effect on herbaceous plant community development. This study contributes to the definition of herbaceous ecological indicators of forest succession in different settings.  相似文献   

10.
Land-use history and large-scale disturbances interact to shape secondary forest structure and composition. How introduced species respond to disturbances such as hurricanes in post-agriculture forest recovery is of particular interest. To examine the effects of hurricane disturbance and previous land use on forest dynamics and composition, we revisited 37 secondary forest stands in former cattle pastures across Puerto Rico representing a range of exposure to the winds of Hurricane Georges in 1998. Stands ranged from 21 to>80 yr since agricultural abandonment and were measured 9 yr posthurricane. Stem density decreased as stands aged, while basal area and species richness tended to increase. Hurricane disturbance exerted contrasting effects on stand structure, contingent on stand age. In older stands, the basal area of large trees fell, shifting to a stand structure characteristic of younger stands, while the basal area of large trees tended to rise in younger stands with increasing hurricane disturbance. These results demonstrate that large-scale natural disturbances can alter the successional trajectory of secondary forest stands recovering from human land use, but stand age, precipitation and soil series were better predictors of changes in stand structure across all study sites. Species composition changed substantially between census intervals, but neither age nor hurricane disturbance consistently predicted species composition change. However, exposure to hurricane winds tended to decrease the abundance of the introduced tree Spathodea campanulata, particularly in smaller size classes. In all sites the abundance of the introduced tree Syzygium jambos showed a declining trend, again most strongly in smaller size classes, suggesting natural thinning through succession.  相似文献   

11.
Plant-frugivore networks play a key role in the regeneration of sub-tropical forest ecosystems. However, information about the impact of habitat characteristics on plant-frugivore networks in fragmented forests is scarce. We investigated the importance of fruit abundance, fruiting plant species richness and canopy cover within habitat fragments for the structure and robustness of plant-frugivore networks in a mosaic forest landscape of South Africa. In total, 53 avian species were involved in fruit removal of 31 fleshy-fruiting plant species. Species specialisation was always higher for plants than for frugivores. Both species and network-level specialisation increased with increasing fruit abundance and decreased with increasing fruiting plant species richness and canopy cover within fragments. Interaction diversity was unaffected by fruit abundance and canopy cover, but increased slightly with increasing fruiting plant species richness. These findings suggest that especially the availability of resources is an important determinant of the structure of plant-frugivore networks in a fragmented forest landscape.  相似文献   

12.
We analyzed successional patterns in a very dry tropical deciduous forest by using 15 plots differing in age after abandonment and contrasted them to secondary successions elsewhere in the tropics. We used multivariate ordination and nonlinear models to examine changes in composition and structure and to estimate forest recovery rates and resilience. A shrub phase characterized early succession (0–3 yr); afterwards, the tree Mimosa acantholoba became dominant. Below its canopy, sprouts and seed-regenerated individuals of mature forest species slowly accumulated. Canopy height, plant density, and crown cover stabilized in less than 15 yr, whereas species richness, diversity, and basal area continued to increase. The pioneer species group has very low diversity and the long-lived pioneer phase typical of humid forests is absent; species composition may therefore recover soon as suggested by convergence toward mature forest species composition. The time trend of plant density also differed from humid forests for it lacked its characteristic density decline, presumably because of differences in regeneration mechanisms between very dry and other less water-stressed forest types. As opposed to the prevailing hypothesis, resilience was not higher than in moister forests, and thus factors other than structure relative simplicity must be accounted for when assessing resilience.  相似文献   

13.
Habitat loss is commonly identified as a major threat to the loss of global biodiversity. In this study, we expand on our previous work by addressing the question of how lepidopteran species richness and composition vary among remnants of North American eastern deciduous forest located within agricultural or pastoral landscapes. Specifically, we tested the relative roles of habitat quantity (measured as stand area and percent forest in the greater landscape) and habitat quality (measured as tree species diversity) as determinants of moth species richness. We sampled >19 000 individuals comprising 493 moth species from 21 forest sites in two forested ecoregions. In the unglaciated Western Allegheny Plateau, the species richness of moths with woody host plants diminished as forest stand size and percent forest in the landscape decreased, but the total species richness and abundance of moths were unaffected by stand size, percent forest in the landscape, or tree species diversity. In contrast, the overall species richness and abundance of moths in the glaciated North Central Tillplain were affected primarily by tree species diversity and secondarily by forest size. Higher tree species diversity may reduce species loss from smaller forest stands, suggesting that small, diverse forests can support comparable numbers of species to those in less diverse, large stands. Smaller forests, however, contained a disproportionate number of moth species that possess larvae known to feed on herbaceous vegetation. Thus, although woody plant feeding moths are lost from forests with changes in stand area, new species appear capable of recolonizing smaller fragments from the surrounding habitat matrix. Our study further suggests that when species replacement occurs, local patch size and habitat quality may be more important than landscape context in determining the community structure of forest Lepidoptera.  相似文献   

14.
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.  相似文献   

15.
Concomitant with the rapid loss of tropical mature forests, the relative abundance of secondary forests is increasing steadily and the latter are therefore of growing interest for conservation. We analysed species richness of fruit-feeding nymphalid butterflies in secondary forest fragments of different age and isolation and in mature forest at the eastern margin of the Lore Lindu National Park in Central Sulawesi, Indonesia. From April to August 2001 we collected 2322 individuals of fruit-feeding butterflies, belonging to 33 species. Butterfly species richness increased with succession, but was significantly higher in mature forests than in all types of secondary forest. Isolation of the forest fragments did not have a significant effect on butterfly species richness in the range of distances (up to 1700 m) studied. Rather it appeared to affect only a few species. Species richness of endemic species was higher than of non-endemic species. Although endemic species were most diverse in mature forests, many species captured were restricted to secondary forests. Our results show that mature forest is essential for the conservation of nymphalid butterflies and for the endemic species in this area. However, considering the relatively large number of species found in these rather small habitat islands, secondary forest fragments, especially older successional stages, can be taken into account in conservation efforts and thus contribute to the preservation of tropical biodiversity on a landscape scale.  相似文献   

16.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

17.
Species diversity, population structure, abundance and dispersion patterns of all woody plants 10cm gbh were inventoried in two 1-ha plots of tropical dry evergreen (sacred grove or temple) forests at Kuzhanthaikuppam (KK) and Thirumanikkuzhi (TM) on the Coromandel coast of south India. Site KK is a stunted forest (average tree height ca 6 m) and TM a tall forest (average tree height ca 10 m). A total of 54 species (in 47 genera and 31 families) were recorded. Species richness and stand density were 42 and 38 species and 1367 and 974 individuals ha–1 respectively for the sites KK and TM. About 50% of the total species were common to both the sites. Site TM is twofold more voluminous (basal area 29.48 m2 ha–1) than KK (basal area 15.44 m2 ha–1). Nearly one third of the individuals are multi-stemmed in the low-statured site KK whereas one fourth of the tree density is multi-stemmed in TM. Species abundance pattern varied between the two sites. The abundance of three species in KK and two species in TM is pronounced. Memecylon umbellatum, the most abundant species contributing to one third of total stand density in KK, is least represented in TM. Species richness, density and diversity indices decreased with increasing girth threshold. Most species exhibited clumped dispersion of individuals both at 0.25 and 1-ha scales. Population structure for girth frequency is an expanding one for both the sites, except for basal area distribution in KK. Variations in plant diversity and abundance are related to site attributes and human impacts. In the light of habitat uniqueness, species richness and sacred grove status, the need for conservation is emphasized.  相似文献   

18.
We studied species richness, composition and vertical distribution of epiphytic bryophytes in submontane rainforest of Central Sulawesi. Bryophytes were sampled on eight canopy trees and on eight trees in the forest understorey. Microclimate was measured at trunk bases and at crown bases. The total recorded number of 146 epiphytic bryophyte species is among the highest ever reported for tropical forests and underlines the importance of the Malesian region as a global biodiversity hotspot. Species composition differed significantly between understorey trees and canopy tree trunks on the one hand, and the forest canopy on the other. Fourty-five percent of the bryophyte species were restricted to canopy tree crowns, 12% to the understorey. Dendroid and fan-like species mainly occurred in the forest understorey whereas tufts were most species rich in the tree crowns. The findings reflect the different microclimatic regimes and substrates found in the understorey and in the forest canopy. The results indicate that assessments of the bryophyte diversity of tropical forests are inadequate when understorey trees and tree crowns are excluded.  相似文献   

19.
The faunas of tank bromeliads were sampled over two years in three forest types at different elevations in the Luquillo Experimental Forest, Puerto Rico, and the diversity of their animal communities compared. Bromeliad plants behaved as islands in that, within forests, the species richness and abundance of their animal communities were significantly and positively correlated with increase in plant size. The amount of canopy debris they accumulated was similarly correlated with increase in plant size. Overall diversity was lowest in the dwarf forest, where plants were uniformly small. Animal communities were stable from year to year, and could be characterised for each forest type and for compartments within the plant. They showed a pattern of high dominance, which increased with elevation (Mc-Naughton index 37, 54, and 73, respectively, for the tabonuco, palo Colorado, and dwarf forest). Alpha-diversity for sites sampled in each year reflected net primary productivity (NPP) of the forest, declining with increasing elevation when animal abundance measures were used (jackknife estimates of Simpson's diversity index 6.54 & 11.04 [tabonuco], 3.53 & 6.22 [palo Colorado], and 2.75 & 2.17 [dwarf forest]). Species richness over the two years, however, was highest in the intermediate palo Colorado forest (187 species), compared to 146 and 88 in the tabonuco and dwarf forests, respectively. These figures were close to jackknife estimates of maximum species richness. The difference in species richness between tabonuco and palo Colorado forests was significant in one year only. In addition to NPP, other factors, such as litter quality and the structural complexity of the habitat in the palo Colorado forest, may have influenced species richness. The most abundant species in individual plants were also the most widely occurring, confirming known patterns of abundance and distribution in other functional groups. Diversity within bromeliad microcosms at different elevations supported known relationships between diversity, productivity, and habitat complexity along gradients and was not related to differences in the total bromeliad habitat available for colonization.  相似文献   

20.
Lichen epiphytes are applied as excellent environmental indicators worldwide. However, very little is known about epiphytic lichen communities and their response to forest dynamics in subtropical China. This paper proposes the applications of the cover, diversity, and functional traits of epiphytic lichens to assess environmental changes associated with succession in subtropical forests of southwest China. Bole lichens were sampled from 120 plots of eight representative forest types in the Ailao Mountains. Total cover, species richness, diversity and community structure of bole lichens differed significantly among forest types, and the highest cover and diversity occurred in the Populus bonatii secondary forest (PBSF). Sixty-one indicator species were associated with particular forest types and more than 50% occurred in the PBSF. Both cover and diversity of most lichen functional groups varied regularly during forest succession. Lichen pioneer species were not displaced by competitively superior species as succession proceeds and cyanolichens were more prevalent in secondary forests. The results also highlight the importance of habitat variables such as canopy openness, host diversity, forest age, tree size, the size of the largest tree, tree density, and basal area on the lichen community. Consequently, our findings support the notion that epiphytic lichens, in terms of cover, diversity, species composition and functional traits can be used as effective indicators for large-scale and long-term forest monitoring. More importantly, the narrowly lobed foliose group was the best candidate indicator of environmental conditions in this region. The combined application of lichen indicator species and functional groups seemed to be a more reliable and more powerful method for monitoring forest dynamics in subtropical montane ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号