首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To quantify stem respiration (RS) under elevated CO2 (eCO2), stem CO2 efflux (EA) and CO2 flux through the xylem (FT) should be accounted for, because part of respired CO2 is transported upwards with the sap solution. However, previous studies have used EA as a proxy of RS, which could lead to equivocal conclusions. Here, to test the effect of eCO2 on RS, both EA and FT were measured in a free‐air CO2 enrichment experiment located in a mature Eucalyptus native forest. Drought stress substantially reduced EA and RS, which were unaffected by eCO2, likely as a consequence of its neutral effect on stem growth in this phosphorus‐limited site. However, xylem CO2 concentration measured near the stem base was higher under eCO2, and decreased along the stem resulting in a negative contribution of FT to RS, whereas the contribution of FT to RS under ambient CO2 was positive. Negative FT indicates net efflux of CO2 respired below the monitored stem segment, likely coming from the roots. Our results highlight the role of nutrient availability on the dependency of RS on eCO2 and suggest stimulated root respiration under eCO2 that may shift vertical gradients in xylem [CO2] confounding the interpretation of EA measurements.  相似文献   

2.
《Global Change Biology》2017,23(9):3501-3512
We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five‐day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long‐term eCO2 treatment, longer than the 10 days observed for decrease of FCO2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of FCO2 following the initiation of eCO2. The reduction of FCO2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and FCO2‐temperature sensitivity. These asymmetric responses pose a tractable challenge to process‐based models attempting to isolate the effect of individual processes on FCO2.  相似文献   

3.
The effects of CO2 on the content and composition of lipid fatty acids (FA) and on the photosynthetic characteristics of unicellular halophilic green alga Dunaliella salina (known to be susceptible to CO2 stress) were investigated. It was shown that even one-day-long increase in the CO2 concentration (from 2 to 10%) provoked an increase in the total amount of FA on the dry weight basis by 30%. After 7-day-long growth at 10% CO2, this value was 2.7-fold higher than that at 2% CO2. The difference in the FA content and composition indicated the activation of FA synthesis de novo and inhibition of their elongation and desaturation, as well as the increase in the relative content of saturated FA at 10% CO2. It was demonstrated that, after one-day-long CO2 stress, the MGDG/DGDG ratio increased fourfold without change in the sum of their FA, which indicates the increase in the proportion of lipids predisposed to micellar (hexagonal phase) but not lamellar structure formation. Under short-term CO2 stress, the ratio of 3/6 FA increased and the content of E-16:113 FA in phosphatidylglycerols increased sharply. The drop in protein content especially in the photosystem I (PSI) preparations, as well as diminishing the ratio of F 700-to-F 686 nm fluorescence (F 700/F 686) under short-term CO2 stress argued for the significant damage to PSI. The reversibility of these changes at more prolonged treatment (7 and 10 days) demonstrated that D. salina cells could restore the functional activity of PSI. The lower level of F 700/F 686, chlorophyll a (Chla)/Chlb, and 3/6 FA ratio in line with the higher level of E-16:113 in the cells growing for a long time at the high CO2 concentration is characteristic for the new structural and functional state of the photosynthetic apparatus providing for the effective photosynthesis of D. salina under these conditions.  相似文献   

4.
Seedlings of Eucalyptus pauciflora, were grown in open-top chambers fumigated with ambient and elevated [CO2], and were divided into two populations using 10% light transmittance screens. The aim was to separate the effects of timing of light interception, temperature and [CO2] on plant growth. The orientation of the screens exposed plants to a similar total irradiance, but incident during either cold mornings (east-facing) or warm afternoons (west-facing). Following the first autumn freezing event elevated CO2-grown plants had 10 times more necrotic leaf area than ambient CO2 plants. West-facing plants had significantly greater (25% more) leaf damage and lower photochemical efficiency (Fv/Fm) in comparison with east-facing plants. Following a late spring freezing event east-facing elevated CO2 plants suffered a greater sustained loss in Fv/Fm than west-facing elevated CO2- and ambient CO2-grown plants. Stomatal conductance was lower under elevated CO2 than ambient CO2 except during late spring, with the highest leaf temperatures occurring in west-facing plants under elevated CO2. These higher leaf temperatures apparently interfered with cold acclimation thereby enhancing frost damage and reducing the ability to take advantage of optimal growing conditions under elevated CO2.  相似文献   

5.
The mutant E1 of Anacystis nidulans R2 requires high CO2 concentration for growth but was able to adapt to low CO2 concentration. This was exhibited by the increased ability to accumulate inorganic carbon within the cells and the large increase in the amount of a 42-kilodalton polypeptide located in the cytoplasmic membrane. The adaptation occurred in E1 cells at an extracellular CO2 concentration as high as 0.3%, which was 8 times the concentration for maximal adaptation in R2 cells. The ability of E1 cells to exhibit low CO2 characteristics at a higher CO2 concentration was attributed to lower intracellular CO2 concentration.  相似文献   

6.
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long‐term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free‐Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment‐induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values – estimated based on temperature alone assuming nonlimiting soil water content – by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil, showing a decrease of ca. 114 g C m?2 yr?1 per 1 g m?2 increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.  相似文献   

7.

Background

Exhaled nitric oxide (FENO) measurements are used as a surrogate marker for eosinophilic airway inflammation. However, many constitutional and environmental factors affect FENO, making it difficult to devise reference values. Our aim was to evaluate the relative importance of factors affecting FENO in a well characterised adult population.

Methods

Data were obtained from 895 members of the Dunedin Multidisciplinary Health and Development Study at age 32. The effects of sex, height, weight, lung function indices, smoking, atopy, asthma and rhinitis on FENO were explored by unadjusted and adjusted linear regression analyses.

Results

The effect of sex on FENO was both statistically and clinically significant, with FENO levels approximately 25% less in females. Overall, current smoking reduced FENO up to 50%, but this effect occurred predominantly in those who smoked on the day of the FENO measurement. Atopy increased FENO by 60%. The sex-related differences in FENO remained significant (p < 0.001) after controlling for all other significant factors affecting FENO.

Conclusion

Even after adjustment, FENO values are significantly different in males and females. The derivation of reference values and the interpretation of FENO in the clinical setting should be stratified by sex. Other common factors such as current smoking and atopy also require to be taken into account.  相似文献   

8.
The release of prostaglandin E2 and F, thromboxane B2 and 6-keto-prostaglandin F was measured in isolated human placental cotyledons perfused under high- and low-oxygen conditions. Also the effect of reoxygenation on prostaglandin production was studied. During the high-oxygen period, prostaglandin E2 accounted for 44 % and 6-keto-prostaglandin F for 28 % of all prostaglandin release, and the rank order of prostaglandin release was E2 > 6-keto-prostaglandin F > thromboxane B2 > prostaglandin F. Hypoxia had no significant effect on quantitative prostaglandin release, but the ration of prostaglandin E2 to prostaglandin F was significantly increased. After the hypoxic period during reoxygenation the release of 6-keto-prostaglandin F was significantly decreased, as was the ratio of 6-keto-prostaglandin F to thromboxane B2. Also the ratio of the vasodilating prostaglandins (E2, 6-keto-prostaglandin F) to the vasocontricting prostaglandins (thromboxane B2, prostaglandin F) was decreased during reoxygenation period. With the constant flow rate, the perfusion pressure increased during hypoxia in six and was unchanged in three preparation. The results indicate that changes in the tissue oxygenation in the placenta affect prostaglandin release in the fetal placental circulation. This may also have circulatory consequences.  相似文献   

9.
We studied the uterine venous plasma concentrations of prostaglandins E2, F, 15 keto 13,14 dihydro E2 and 15 keto 13,14 dihydro F in late pregnant dogs in order to evaluate the rates of production and metabolism of prostaglandin E2 and F in pregnancy in vivo. We used a very specific and sensitive gas chromatography-mass spectrometry assay to measure these prostaglandins. The uterine venous concentrations of prostaglandin E2 and 15 keto 13,14 dihydro E2 were 1.35±.27 ng/ml and 1.89±.37 ng/ml, respectively; however, we could not find any prostaglandin F and very little of its plasma metabolite in uterine venous plasma. Since uterine microsomes can generate prostaglandin F and E2 from endoperoxides, prostaglandin F production in vivo must be regulated through an enzymatic step after endoperoxide formation. Prostaglandin E2 is produced by pregnant canine uterus in quantities high enough to have a biological effect in late pregnancy; however, prostaglandin F does not appear to play a role at this stage of pregnancy.  相似文献   

10.
Two major components of climate change, increasing atmospheric [CO2] and increasing temperature, may substantially alter the effects of water availability to plants through effects on the rate of water loss from leaves. We examined the interactive effects of elevated [CO2] and temperature on seasonal patterns of stomatal conductance (gs), transpiration (E) and instantaneous transpiration efficiency (ITE) in Douglas‐fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Seedlings were grown in sunlit chambers at either ambient CO2 (AC) or ambient + 180 µmol mol?1 CO2 (EC), and at ambient temperature (AT) or ambient + 3·5 °C (ET) in a full‐factorial design. Needle gas exchange at the target growth conditions was measured approximately monthly over 21 months. Across the study period and across temperature treatments, growth in elevated [CO2] decreased E by an average of 12% and increased ITE by an average of 46%. The absolute reduction of E associated with elevated [CO2] significantly increased with seasonal increases in the needle‐to‐air vapour pressure deficit (D). Across CO2 treatments, growth in elevated temperature increased E an average of 37%, and did not affect ITE. Combined, growth in elevated [CO2] and elevated temperature increased E an average of 19% compared with the ACAT treatment. The CO2 supply and growth temperature did not significantly affect stomatal sensitivity to D or the relationship between gs and net photosynthetic rates. This study suggests that elevated [CO2] may not completely ameliorate the effect of elevated temperature on E, and that climate change may substantially alter needle‐level water loss and water use efficiency of Douglas‐fir seedlings.  相似文献   

11.
High-light effects on CO2 fixation gradients across leaves   总被引:2,自引:1,他引:1  
Chlorophyll fluorescence and internal patterns of 14CO2 fixation were measured in sun and shade leaves of spinach after treatment with various light intensities. When sun leaves were irradiated with 2000μmol m?2 s?1 for 2h, FV/FM decreased by about 15%, but 14CO2 fixation was unaffected, whereas shade leaves exhibited a 21% decrease in Fv/FM and a 25% decrease in 14CO2 fixation. Irradiation of sun and shade leaves with 4000μmol m?1 for 4 h decreased FV/FM by 30% in sun leaves and 40% in shade leaves, while total 14CO2 fixation decreased by 41% in sun leaves and 55% in shade leaves. After light treatment, gradients of CO2 fixation across leaves were determined by measuring 14CO2 fixed in paradermal leaf sections after a 10s pulse of 14CO2. Gradients of 14CO2 fixation in control sun and shade leaves were identified when expressed on a relative basis and normalized for leaf depth. Treatment of leaves with 2000 μmol PAR m?2 s?1 for 2h did not after patterns of carbon fixation across sun leaves, but slightly altered the pattern in shade leaves. In contrast, treatment of sun and shade leaves with 4000μmol m?2 s?1 for 4h decreased carbon fixation more in the palisade mesophyll cells than in the spongy mesophyll cells of sun and shade leaves, and fixation in medial tissue of shade leaves was dramatically decreased compared to the adaxial and abaxial tissue. The interaction between leaf anatomy and biochemical parameters involved in tolerance to photoinhibition in spinach is discussed.  相似文献   

12.
Lifelong exposure to elevated concentrations of atmospheric CO2 may enhance carbon assimilation of trees with unlimited rooting volume and consequently may reduce requirements for photoprotective pigments. In early summer the effects of elevated [CO2] on carboxylation and light utilization of mature Quercus pubescens trees growing under chronic [CO2] enrichment at two CO2 springs and control sites in Italy were examined. Net photosynthesis was enhanced by 36 to 77%. There was no evidence of photosynthetic downregulation early in the growing season when sink demand presumably was greatest. Specifically, maximum assimilation at saturating [CO2], electron transport capacity, and Rubisco content, activity and carboxylation capacity were not significantly different in trees growing at the CO2 springs and their respective control sites. Foliar biochemical content, leaf reflectance index of chlorophyll pigments (NDVI), and photochemical efficiency of PSII (ΔF/Fm′) also were not significantly affected by [CO2] enrichment except that starch content and ΔF/Fm′ tended to be higher at one spring (42 and 15%, respectively). Contrary to expectation, prolonged elevation of [CO2] did not reduce xanthophyll cycle pigment pools or alter mid‐day values of leaf reflectance index of xanthophyll cycle pigments (PRI), despite the enhancement of carbon assimilation. However, both these pigments and PRI were well correlated with electron transport capacity.  相似文献   

13.
Hylocereus undatus (Haworth) Britton and Rose growing in controlled environment chambers at 370 and 740 μmol CO2 mol?1 air showed a Crassulacean acid metabolism (CAM) pattern of CO2 uptake, with 34% more total daily CO2 uptake under the doubled CO2 concentration and most of the increase occurring in the late afternoon. For both CO2 concentrations, 90% of the maximal daily CO2 uptake occurred at a total daily photosynthetic photon flux density (PPFD) of only 10 mol m?2 day?1 and the best day/night air temperatures were 25/15°C. Enhancement of the daily net CO2 uptake by doubling the CO2 concentration was greater under the highest PPFD (30 mol m?2 day?1) and extreme day/night air temperatures (15/5 and 45/35°C). After 24 days of drought, daily CO2 uptake under 370 μmol CO2 mol?1 was 25% of that under 740 μmol CO2 mol?1. The ratio of variable to maximal chlorophyll fluorescence (Fy/Fm) decreased as the PPFD was raised above 5 mol m?2 day?1, at extreme day/night temperatures and during drought, suggesting that stress occurred under these conditions. Fv/Fm was higher under the doubled CO2 concentration, indicating that the current CO2 concentration was apparently limiting for photosynthesis. Thus net CO2 uptake by the shade-tolerant H. undatus, the photosynthetic efficiency of which was greatest at low PPFDs. showed a positive response to doubling the CO2 concentration, especially under stressful environmental conditions.  相似文献   

14.
A new type of modulation fluorometer was used in the study of energy-dependent chlorophyll fluorescence quenching (qE) in intact leaves. Under conditions of strong energization of the thylakoid membrane (high light intensity, absence of CO2) not only variable fluorescence, FV, but also dark-level fluorescence, FO, was quenched, leading to definition of a quenching coefficient, qO. Information on qO was shown to be essential for correct determination of photochemical (qQ) and energy dependent quenching (qE) by the saturation pulse method. The relationship between qE and qO was analysed over a range of light intensities at steady state conditions. qE was found to consist of two components, the second of which is linearly correlated with qO. qO and the second component of qE are interpreted to reflect the state 1 — state 2 shift caused by LHC II phosphorylation.  相似文献   

15.
Radioimmunoassays of platelet prostaglandins E1 and F in platelet rich plasma or platelet suspension, demonstrate that both PGE1 and PGF are present at higher concentrations than prostaglandins E2 and F. Gas chromatography — mass spectrometry determinations of prostaglandins E1 and E2 in resting washed platelets confirm this difference. Lastly, there is a greater incorporation of [1-14C] acetate into prostaglandins E1 and F compared to that into prostaglandins E2 and F.  相似文献   

16.
Two species of eucalypt (Eucalyptus macrorhyncha and E. rossii) were grown under conditions of high temperatures (45 °C, maximum) and high light (1500 μmol m?2 s?1, maximum) at either ambient (350 μL L?1) or elevated (700 μL L?1) CO2 concentrations for 8 weeks. The growth enhancement, in terms of total dry weight, was 41% and 103% for E. macrorhyncha and E. rossii, respectively, when grown in elevated [CO2]. A reduction in specific leaf area and increased concentrations of non-structural carbohydrates were observed for leaves grown in elevated [CO2]. Plants grown in elevated [CO2] had an overall increase in photosynthetic CO2 assimilation rate of 27%; however, when measured at the same CO2 concentration a down-regulation of photosynthesis was evident especially for E. macrorhyncha. During the midday period when temperatures and irradiances were maximal, photosynthetic efficiency as measured by chlorophyll fluorescence (Fv/Fm) was lower in E. macrorhyncha than in E. rossii. Furthermore, Fv/Fm was lower in leaves of E. macrorhyncha grown under elevated than under ambient [CO2]. These reductions in Fv/Fm were accompanied by increases in both photochemical (qP) and nonphotochemical quenching (qN and NPQ), and by increases in the concentrations of xanthophyll cycle pigments with an increased proportion of the total xanthophyll cycle pool comprising of antheraxanthin and zeaxanthin. Thus, increased atmospheric [CO2] may enhance photoinhibition when environmental stresses such as high temperatures limit the capacity of a plant to respond with growth to elevated [CO2].  相似文献   

17.
Acetylsalicylic acid (ASA), indomethacin, sodium meclofenamate (FEN), phenylbutazone (PB), phloretin phosphates (PP), SC-19220, and diethylcarbamazine citrate (DECC) were screened against histamine, 5-hydroxytryptamine (5-HT), bradykinin, acetylcholine, and prostaglandins (PG) E1, E2, and F to determine their specificity in antagonizing PG's on the bovine pulmonary vein. PG E2 relaxed the smooth muscle preparation at low concentrations and induced contraction at higher concentrations. PG E1 consistently evoked dose-related relaxations, whereas PG F contracted the bovine pulmonary vein. Studies with inhibitors suggest that the different actions of prostaglandins could be mediated through different receptors. Sodium meclofenamate and PP dimer blocked PG E2-induced contractions, whereas relaxations were not blocked. DECC inhibited the relaxant effect of PG E2. DECC also antagonized histamine, 5-HT, and PG F, suggesting the drug is rather non-specific. Phenylbutazone antagonized the actions of both PG E2 and PG F on the bovine pulmonary vein. By classifying receptors by antagonism the bovine pulmonary vein appears to contain PG E2 (PP-type), PG E2 (FEN-type), PG E2 (PB-type), and PG F (PB-type) receptors. An absence of SC-type PG-receptors is noted.  相似文献   

18.
19.
A substantial portion of locally respired CO2 in stems can be assimilated by chloroplast-containing tissues. Woody tissue photosynthesis (Pwt) therefore plays a major role in the stem carbon balance. To study the impact of Pwt on stem carbon cycling along a gradient of water availability, stem CO2 efflux (EA), xylem CO2 concentration ([CO2]), and xylem water potential (Ψxylem) were measured in 4-year-old Populus tremula L. trees exposed to drought stress and different regimes of light exclusion of woody tissues. Under well-watered conditions, local Pwt decreased EA up to 30%. Axial CO2 diffusion (Dax) induced by distant Pwt caused an additional decrease in EA of up to 25% and limited xylem [CO2] build-up. Under drought stress, absolute decreases in EA driven by Pwt remained stable, denoting that Pwt was not affected by drought. At the end of the dry period, when transpiration was low, local Pwt and Dax offset 20% and 10% of stem respiration on a daily basis, respectively. These results highlight (a) the importance of Pwt for an adequate interpretation of EA measurements and (b) homeostatic Pwt along a drought stress gradient, which might play a crucial role to fuel stem metabolism when leaf carbon uptake and phloem transport are limited.  相似文献   

20.
Evapotranspiration (E) and CO2 flux (Fc) in the growing season of an unusual dry year were measured continuously over a Scots pine forest in eastern Finland, by eddy covariance techniques. The aims were to gain an understanding of their biological and environmental control processes. As a result, there were obvious diurnal and seasonal changes in E, Fc, surface conductance (gc), and decoupling coefficient (Ω), showing similar trends to those in radiation (PAR) and vapour pressure deficit (δ). The maximum mean daily values (24-h average) for E, Fc, gc, and Ω were 1.78 mmol m−2 s−1, −11.18 µmol m−2 s−1, 6.27 mm s−1, and 0.31, respectively, with seasonal averages of 0.71 mmol m−2 s−1, −4.61 µmol m−2 s−1, 3.3 mm s−1, and 0.16. E and Fc were controlled by combined biological and environmental variables. There was curvilinear dependence of E on gc and Fc on gc. Among the environmental variables, PAR was the most important factor having a positive linear relationship to E and curvilinear relationship to Fc, while vapour pressure deficit was the most important environmental factor affecting gc. Water use efficiency was slightly higher in the dry season, with mean monthly values ranging from 6.67 to 7.48 μmol CO2 (mmol H2O)−1 and a seasonal average of 7.06 μmol CO2 (μmol H2O)−1. Low Ω and its close positive relationship with gc indicate that evapotranspiration was sensitive to surface conductance. Mid summer drought reduced surface conductance and decoupling coefficient, suggesting a more biotic control of evapotranspiration and a physiological acclimation to dry air. Surface conductance remained low and constant under dry condition, supporting that a constant value of surface constant can be used for modelling transpiration under drought condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号