首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C4 photosynthesis is functionally dependent on metabolic interactions between mesophyll- and bundle-sheath cells. Although the C4 cycle is biochemically well understood, many aspects of the regulation of enzyme activities, gene expression and cell differentiation are elusive. Protein kinases are likely involved in these regulatory processes, providing links to hormonal, metabolic and developmental signal-transduction pathways. Here we describe the cloning and characterization of 14 different putative protein kinase leaf cDNA clones from the C4 plant Sorghum bicolor. These genes belong to three different protein kinase subfamilies: ribosomal protein S6 kinases, SNF1-like protein kinases, and receptor-like protein kinases. We report the partial cDNA sequences, mesophyll/bundle-sheath steady-state mRNA ratios, mesophyll/etiolated leaf steady-state mRNA ratios, and the positions of 14 protein kinase genes on the genetic map of S. bicolor. Only three of the protein kinase genes described here are expressed preferentially in mesophyll cells as compared with the bundle-sheath. Received: 16 January 1998 / Accepted: 3 April 1998  相似文献   

2.
C4 photosynthesis is functionally dependent on metabolic interactions between mesophyll and bundle-sheath cells. Although the C4 cycle is biochemically well understood many aspects of the regulation of enzyme activities, gene expression and cell differentiation are elusive.Protein kinases are likely involved in these regulatory processes providing links to hormonal, metabolic and developmental signal transduction pathways. We have identified several protein kinases that are differentially expressed in mesophyll and bundle-sheath cells of the C4 plant Sorghum bicolor. Here we describe the characterization of two putative protein kinases that show high similarity to the SNF1/AMPK family of protein serine/threonine kinases. The mRNA of both kinases accumulates to much higher levels in mesophyll cells than in the bundle-sheath and can also be detected in root tissue. Complementation experiments with a snf1 mutant of Saccharomyces cerevisiae indicate that the S. bicolor protein kinase SNFL1 does not represent a functional homologue of the yeast SNF1 protein kinase.  相似文献   

3.
4.
We describe the identification and characterization of the BMH1 gene from the yeast Saccharomyces cerevisiae. The gene encodes a putative protein of 292 amino acids which is more than 50% identical with the bovine brain 14-3-3 protein and proteins isolated from sheep brain which are strong inhibitors of protein kinase C. Disruption mutants and strains with the BMH1 gene on multicopy plasmids have impaired growth on minimal medium with glucose as carbon source, i.e. a 30-50% increase in generation time. These observations suggest a regulatory function of the bmh1 protein. In contrast to strains with an intact or a disrupted BMH1 gene, strains with the BMH1 gene on multicopy plasmids hardly grew on media with acetate or glycerol as carbon source.  相似文献   

5.
6.
7.
8.
The nucleotide sequence of a cDNA prepared from poly(A)+ RNA from Lycopersicon esculentum fruit codes for a protein, M r 20812, with features representative of the protein core of arabinogalactan proteins. The deduced amino acid sequence resembles that of peptides of arabinogalactan proteins isolated from carrot and rose and is most similar to the sequence of tryptic peptides from Lolium multiflorum (Gleeson et al., Biochem J 264 (1989) 857–862). The similar sequences include a number of Ala-Pro repeats, a feature considered distinctive of arabinogalactan proteins. The amino acid composition is similar to that of the peptide core of the Lolium multiflorum arabinogalactan protein; alanine, serine and proline account for 57% of the polypeptide. The mRNA corresponding to the cDNA sequence was detected in roots, leaves and fruit. The levels of mRNA are reduced in older leaves, in fruit that have commenced ripening and in leaves and fruit that have been wounded.  相似文献   

9.
1. Protein kinase C (PK-C) from the rat parotid gland has been partially purified and characterized for the first time. During its purification, this enzyme exhibited the same chromatographic behavior as the rat brain enzyme. 2. Affinities for phosphatidylserine (3 micrograms/ml), ATP (8 microM) and calcium (8 microM) were determined kinetically and found to be similar for the enzymes from each tissue. 3. Experiments designed to detect agonist-stimulated translocation of PK-C activity during phosphatidylinositol turnover found no change in levels of soluble PK-C, suggesting that PK-C translocation may not be an obligatory correlate of its activation. The implications of this result are discussed.  相似文献   

10.
Ye X  Ji C  Huang Q  Cheng C  Tang R  Xu J  Zeng L  Dai J  Wu Q  Gu S  Xie Y  Mao Y 《Molecular biology reports》2003,30(2):91-96
Protein kinases (PKs) represent a well studied but most diverse protein superfamily. The covalent, reversible linkage of phosphate to serine, threonine, and tyrosine residues of substrate proteins by protein kinases is probably ubiquitous cellular mechanism for regulation of physiological processes. It is known to us that most signaling pathways impinge at some point on protein kinases. Here we report a human putative receptor protein kinase cDNA STYK1. The STYK1 cDNA is 2749 base pairs in length and contains an open reading frame encoding 422 amino acids. The STYK1 gene is mapped to human chromosome 12p13 and 11 exons were found. RT-PCR showed that STYK1 is widely expressed in human tissues.  相似文献   

11.
Characterization of cDNA clones for the human c-yes gene.   总被引:32,自引:15,他引:17       下载免费PDF全文
Three c-yes cDNA clones were obtained from poly(A)+ RNA of human embryo fibroblasts. Sequence analysis of the clones showed that they contained inserts corresponding to nearly full-length human c-yes mRNA, which could encode a polypeptide of 543 amino acids with a relative molecular weight (Mr) of 60,801. The predicted amino acid sequence of the protein has no apparent membrane-spanning region or suspected ligand binding domain and closely resembles pp60c-src. Comparison of the sequences of c-yes and v-yes revealed that the v-yes gene contains most of the c-yes coding sequence except the region encoding its extreme carboxyl terminus. The region missing from the v-yes protein is the part that is highly conserved in cellular gene products of the protein-tyrosine kinase family.  相似文献   

12.
Little is known about the specific signaling roles of Rap2, a Ras family small GTP-binding protein. In a search for novel Rap2-interacting proteins by the yeast two-hybrid system, we isolated isoform 3 of the human mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), a previously described but uncharacterized isoform. Other isoforms of MAP4K4 in humans and mice are known as hematopoietic progenitor kinase (HPK)/germinal center kinase (GCK)-like kinase and Nck-interacting kinase, respectively. MAP4K4 belongs to the STE20 group of protein kinases and regulates c-Jun N-terminal kinase (JNK). MAP4K4 interacted with Rap2 through its C-terminal citron homology domain but did not interact with Rap1 or Ras. Interaction with Rap2 required the intact effector region of Rap2. MAP4K4 interacted preferentially with GTP-bound Rap2 over GDP-bound Rap2 in vitro. In cultured cells, MAP4K4 colocalized with Rap2, while a mutant MAP4K4 lacking the citron homology domain failed to do so. Furthermore, Rap2 enhanced MAP4K4-induced activation of JNK. These results suggest that MAP4K4 is a putative effector of Rap2 mediating the activation of JNK by Rap2.  相似文献   

13.
C House  P J Robinson  B E Kemp 《FEBS letters》1989,249(2):243-247
A 29-residue synthetic peptide, Leu530-Leu-Tyr-Glu-Met-Leu-Ala-Gly-Gln-Ala-Pro-Phe-Glu-Gly-Glu-Asp -Glu-Asp- Glu-Leu-Phe-Gln-Ser-Ile-Met-Glu-His-Asn-Val-NH2(558), corresponding to part of the catalytic domain of protein kinase C, is a potent activator of the enzyme, with a Ka of approx. 10 microM. Activation was 59 +/- 4% of that observed with phosphatidylserine, predominantly due to an increased Vmax, partially calcium-dependent, observed with all three isoenzymes (alpha, beta, gamma), and resulted in autophosphorylation. It is proposed that the region between Gly528 and Arg583 is part of the protein substrate binding region of protein kinase C and synthetic peptide analogs of this region activate the enzyme by blocking the action of the enzyme's basic pseudosubstrate autoregulatory region.  相似文献   

14.
The phorbol ester receptor protein kinase C (PKC) gene family encodes essential mediators of eukaryotic cellular signals. Molecular dissection of their mechanisms of action has been limited in part by the lack of random mutagenesis approaches and by the complexity of signaling pathways in mammalian cells which involve multiple PKC isoforms. Here we present a rapid screen which permits the quantification of mammalian PKC activity phenotypically in the yeast Saccharomyces cerevisiae. Bovine PKC alpha cDNA is functionally expressed in S. cerevisiae. This results in a phorbol ester response: a fourfold increase in the cell doubling time and a substantial decrease in yeast colony size on agar plates. We have expressed pools of bovine PKC alpha cDNAs mutagenized by Bal 31 deletion of internal, amino-terminal, or carboxyl-terminal sequences and have identified three classes of mutants on the basis of their distinct yeast phenotypes. Representatives of each class were analyzed. An internal deletion of amino acids (aa) 172 to 225 displayed ligand-dependent but reduced catalytic activity, an amino-terminal truncation of aa 1 to 153 displayed elevated and ligand-independent activity, and a carboxyl-terminal 26-aa truncation (aa 647 to 672) lacked activity under any conditions. Additional mutations confirmed the distinct functional characteristics of these classes. Our data show that deletion of the V1 and C1 regions results in elevated basal catalytic activity which is still Ca2+ responsive. Internal deletions in the V2 and C2 regions do not abolish phorbol ester or Ca2+ regulation of PKC activity, suggesting that most of the C2 domain is not essential for phorbol ester stimulation and most of the regulatory domain is dispensable for Ca2+ regulation of PKC activity. These distinct activities od the PKC mutants correlate with a specific and proportional yeast phenotype and are quantified on agar plates by yeast colony size. This provides a phenotypic screen which is suitable to identity rare, randomly altered but active mammalian PKC mutants. It quantifies their catalytic and biological activities in response to PKC activators or inhibitors for a systematic mapping of PKC structure and function or PKC-drug interaction.  相似文献   

15.
Complementary DNA clones specific for phospholamban have been isolated from a canine cardiac cDNA library. The amino acid sequence deduced from the cDNA sequence showed that phospholamban consisted of 52 amino acid residues and was synthesized without an amino-terminal signal sequence. The RNA blot analysis revealed that phospholamban mRNAs were represented by two main species of approximately 1.2kb and approximately 2.8kb. These mRNAs appeared to differ primarily in the length of the 3' untranslated region.  相似文献   

16.
A cDNA library was constructed with poly(A)+ RNA from unsporulated oocysts of Eimeria tenella in pUC18. After screening, 4 cDNA clones that hybridized to RNA of unsporulated and sporulating oocysts but not to RNA of either sporulated oocysts or second generation merozoites were isolated and characterized. Each of the cDNA clones is unique. The loci for 2 of the clones are on E. tenella chromosome 7, the site of the third is located on chromosome 6 and the last clone hybridizes, for the most part, to chromosome 5 but also to other E. tenella chromosomes. The cognate RNAs for each of the cDNA clones show differential patterns of hybridization during oocyst sporulation with the levels of RNA being low at the start of sporulation (0 hr), increasing to peak levels between 6.5 and 23 hr after the onset of sporulation and, in each case, decreasing to low hybridization levels at 48 hr after initiation of sporulation. These results establish that specific mRNA levels are differentially regulated during sporulation.  相似文献   

17.
Protein kinase C (PKC) was partially purified from Xenopus laevis oocytes by ammonium sulfate fractionation followed by DEAE-cellulose and hydroxyapatite column chromatography. In the latter chromatography, two distinct PKC activities were identified. Both PKC fractions contained an 80 kDa protein which was recognized by three antisera raised against the conserved regions of mammalian PKC. However, specific antisera against alpha, beta I, beta II, and gamma-subspecies of rat PKC did not recognize the protein. Kinetic properties of the Xenopus PKCs were very similar to those of the rat alpha PKC, and only a subtle difference was found in the mode of activation by arachidonic acid. When oocytes were treated with the tumor promoter, phorbol 12-myristate 13-acetate, one of the Xenopus PKCs was found to disappear very rapidly, while the other remained unchanged up to 2 hr.  相似文献   

18.
Characterization of protein kinase C in early Xenopus embryogenesis   总被引:2,自引:0,他引:2  
Recently, we presented evidence that protein kinase C (PKC) is involved in mediating the endogenous signals that induced competent Xenopus ectoderm to differentiate to neural tissue. We report here that PKC is already strongly activated in neural-induced ectoderm from midgastrula embryos and that this activation runs parallel with an increase in the level of inositol phosphates. We further identify several proteins that are phosphorylated, both in natural neural-induced ectoderm and in TPA-treated ectoderm, suggesting that they are phosphorylated through the PKC route. We found no major changes in PKC activity among different pregastrula stages, including the unfertilized egg. However, PKC isolated from animal, ectodermal cells is highly sensitive to Ca2+ and can be activated by low concentrations, (6-25 microM) of arachidonic acid, while PKC isolated from vegetal, endodermal cells is more insensitive to Ca2+ and cannot be activated by arachidonic acid. These results suggest that different PKC isozymes are present in animal and vegetal cells.  相似文献   

19.
Mitogen-activated protein kinase kinase 4 (MAP2K4) plays a crucial role in the stress-activated signal cascade and is enzymatically regulated by ligand or substrate binding, and/or post-translational modification. Crystal structures combined with small-angle X-ray scattering experiments revealed that the apo form of non-phosphorylated MAP2K4 (npMAP2K4) exists in a transient state which has a longer conformation compared with the typical kinase folding. Upon ATP-binding, the transient conformation adopted the configuration of typical kinase folding. In the absence of ATP-binding, the transient state of apo npMAP2K4 may shift to a state of aggregation via non-particular hydrophobic interactions as a result of the exposed hydrophobic residues.  相似文献   

20.
A cDNA library from ethephon-treated cucumber cotyledons (Cucumis sativus L. cv. Poinsett 76) was constructed. Two cDNA clones encoding putative peroxidases were isolated by means of a synthetic probe based on a partial amino acid sequence of a 33 kDa cationic peroxidase that had been previously shown to be induced by ethylene. DNA sequencing indicates that the two clones were derived from two closely related RNA species that are related to published plant peroxidase sequences. Southern analysis indicates that there are 1–5 copies in a haploid genome of a gene homologous to the cDNA clones. The deduced amino acid sequences are homologous with a tobacco (55% sequence identity), a horseradish (53%), a turnip (45%), and a potato (41%) peroxidase. The cloned sequences do not encode the 33 kDa peroxidase from which the original synthetic probe was been derived, but rather other putative peroxidases. An increase in the level of mRNA is evident by 3 hours after ethephon or ethylene treatment and plateaus by 15 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号