首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ftsZ gene was cloned from the chromosomal DNA of Brevibacterium lactofermentum by the polymerase chain reaction (PCR) using two oligonucleotides designed from two conserved regions found in most of the previously cloned and sequenced ftsZ genes from other microorganisms. ftsZ is a single-copy gene in corynebacteria and is located downstream from ftsQ and murC, indicating linkage between genes involved in peptidoglycan synthesis (mur genes) and genes involved in cell division (fts genes). The organisation of the cluster is similar to that in Streptomyces and different from those of Escherichia coli or Bacillus subtilis because ftsA is not located upstream of ftsZ. The gene was expressed in E. coli using the T7 expression system; the calculated molecular weight of the expressed protein was 50 kDa. Expression of the B. lactofermentum ftsZ gene in E. coli inhibited cell division and led to filamentation. The ftsZ gene of this organism does not complement ftsZ mutations or deletions in E. coli, when cloned on low or high-copy-number vectors. Received: 14 January 1998 / Accepted: 31 March 1998  相似文献   

2.
Buchnera aphidicola, the endosymbiont of the aphid Schizaphis graminum, contains the gene ftsZ, which codes for a protein involved in the initiation of septum formation during cell division. With immunological techniques, this protein has been detected in cell-free extracts of the endosymbiont. Nucleotide sequence determination of a 6.4-kilobase B. aphidicola DNA fragment has indicated that, as in E. coli, ftsZ is adjacent to genes coding for other cell division proteins as well as genes involved in murein synthesis (murC–ddlB–ftsA–ftsZ). Although B. aphidicola ftsZ is expressed in E. coli, it cannot complement E. coli ftsZ mutants. High levels of B. aphidicola FtsZ results in the formation of long filamentous E. coli cells, suggesting that this protein interferes with cell division. The presence of FtsZ indicates that in this, as well as in many other previously described properties, B. aphidicola resembles free-living bacteria. Received: 22 July 1997 / Accepted: 28 July 1997  相似文献   

3.
Microbial morphology engineering has recently become interesting for biotechnology. Genes ftsZ and mreB encoding proteins of bacterial fission ring and skeletons, respectively, are essential for cell growth, they both are the most important genes keeping the bacterial shapes including the cell length and width, respectively. Clustered regularly interspaced short palindromic repeats interference, abbreviated as CRISPRi, was for the first time used in this study to regulate expression intensities of ftsZ or/and mreB in E. coli. Five sgRNAs associated with CRISPRi were designed and synthesized, respectively, to target five various locations on genes ftsZ or mreB encoded in the E. coli chromosome, resulting in various reduced expression levels of ftsZ or/and mreB, respectively, forming elongated or/and fatter cells. Repressions on gene expressions of ftsZ or/and mreB could be further intensified by combining various sgRNAs together. It was found that the stronger the repression on genes ftsZ or/and mreB, the longer the E. coli fibers, and the larger the E. coli cells. Combined repressions on expressions of ftsZ and mreB generated long and larger E. coli with diverse morphologies including various sizes of gourds, bars, coccus, spindles, multi-angles and ellipsoids. In all cases, accumulations of intracellular biopolyester polyhydroxybutyrate (PHB) were in direct proportional to the intracellular volumes, ranging from 40% to 80% PHB in bacterial cell dry weights, depending on the cell volumes increases by the above CRISPRi applications.  相似文献   

4.
The chain length distribution of murein glycan strands was analyzed in wild-type cells and in cells in which preseptal and/or septal murein synthesis was prevented in ftsZ84 and ftsI36 mutants of E. coli. This revealed a significant change in glycan chain lengths in newly synthesized murein associated with inactivation of the ftsZ gene product but not with inactivation of the ftsI gene product. This is the first reported abnormality in murein biosynthesis associated with mutation of an essential cell division gene.  相似文献   

5.
During growth of high-cell-density cultures of Escherichia coli, overproduction of recombinant proteins often results in increased stress response, cell filamentation, and growth cessation. Filamentation of cells consequently lowers final achievable cell concentration and productivity of the target protein. Reported here is a methodology that should prove useful for the enhancement of cell growth and protein productivity by the suppression of cell filamentation. By the coexpression of the E. coli ftsA and ftsZ genes, which encode key proteins in cell division, growth of recombinant strains as well as production of human leptin and human insulin-like growth factor I was improved. Observation of cell morphology revealed that the coexpression of the ftsA and ftsZ genes successfully suppressed filamentation caused by the accumulation of recombinant proteins.  相似文献   

6.
7.
The maltose degradation operon containing genes encoding maltose phosphorylase mapA and phosphoglucomutase pgmA from Lactobacillus sanfranciscensis DSM20451T were cloned and expressed in Escherichia coli. These genes represent the first genetic data available for this species beyond taxonomic classification. MapA encodes a 754-amino acid polypeptide representing maltose phosphorylase, MapA, with a calculated molecular mass of 85.7 kDa. Comparative sequence analysis showed that mapA is of a new type distinct from other α-glucosidase genes sequenced so far. Putatively, pyridoxal 5′-phosphate is required as cofactor. The deduced amino acid sequence of pgmA shows an overall similarity of 39% to the phosphoglucomutase of Lactococcus lactis. pgmA is separated by a single nucleotide from the preceding mapA gene indicating effective translation by translational coupling. Upon subcloning mapA was heterologously expressed in E. coli. Additionally, upstream of the maltose-degrading operon ORF1 and ORF2 are located in the opposite direction. These genes show homology to fabZ and accB from E. coli and Bacillus subtilis, respectively, both involved in fatty acids biosynthesis.  相似文献   

8.
A 1194 by open reading frame that codes for a 398 amino acid peptide was cloned from a λgt11 library of Drosophila melanogaster genomic DNA. The predicted peptide sequence is very similar to three previously characterized protein sequences that are encoded by the ftsZ genes in Escherichia coli, Bacillus subtilis and Rhizobium meliloti. The FtsZ protein has a major role in the initiation of cell division in prokaryotic cells. Using a tetracycline treatment that eradicates bacterial parasites from insects, the ftsZ homologue has been found to be derived from a bacterium that lives within the strain. However, polymerase chain reaction (PCR) amplification of the gene from treated embryos suggests that it is not derived from a gut bacterium. Nevertheless, by amplifying and characterizing part of the 16S rRNA from this bacterium we have been able to demonstrate that it is a member of the genus Wolbachia, a parasitic organism that infects, and disturbs the sexual cycle of various strains of Drosophila simulans. We suggest that this ftsZ homologue is implicated in the cell division of Wolbachia, an organism that fails to grow outside the host organism. Sequence and alignment analysis of this ftsZ homologue show the presence of a potential GTP-binding motif indicating that it may function as a GTPase. The consequences of this function particularly with respect to its role in cell division are discussed.  相似文献   

9.
10.
A homologue of the bacterial cell division gene ftsZ was cloned from the filamentous bacterium Streptomyces coelicolor. The gene was located on the physical map of the chromosome at about ‘11 o'clock’ (in the vicinity of glkA, hisA and trpB). Surprisingly, a null mutant in which the 399-codon ftsZ open reading frame was largely deleted was viable, even though the mutant was blocked in septum formation. This indicates that cell division may not be essential for the growth and viability of S. coelicolor. The ftsZ mutant was able to produce aerial hyphae but was unable to produce spores, a finding consistent with the idea that ftsZ is required in order for aerial hyphae to undergo septation into the uninucleoid cells that differentiate into spores.  相似文献   

11.
Midcell selection, septum formation, and cytokinesis in most bacteria are orchestrated by the eukaryotic tubulin homolog FtsZ. The alphaproteobacterium Magnetospirillum gryphiswaldense (MSR-1) septates asymmetrically, and cytokinesis is linked to splitting and segregation of an intracellular chain of membrane-enveloped magnetite crystals (magnetosomes). In addition to a generic, full-length ftsZ gene, MSR-1 contains a truncated ftsZ homolog (ftsZm) which is located adjacent to genes controlling biomineralization and magnetosome chain formation. We analyzed the role of FtsZm in cell division and biomineralization together with the full-length MSR-1 FtsZ protein. Our results indicate that loss of FtsZm has a strong effect on microoxic magnetite biomineralization which, however, could be rescued by the presence of nitrate in the medium. Fluorescence microscopy revealed that FtsZm-mCherry does not colocalize with the magnetosome-related proteins MamC and MamK but is confined to asymmetric spots at midcell and at the cell pole, coinciding with the FtsZ protein position. In Escherichia coli, both FtsZ homologs form distinct structures but colocalize when coexpressed, suggesting an FtsZ-dependent recruitment of FtsZm. In vitro analyses indicate that FtsZm is able to interact with the FtsZ protein. Together, our data suggest that FtsZm shares key features with its full-length homolog but is involved in redox control for magnetite crystallization.  相似文献   

12.
Mycoplasma genomes exhibit an impressively low amount of genes involved in cell division and some species even lack the ftsZ gene, which is found widespread in the microbial world and is considered essential for cell division by binary fission. We constructed a Mycoplasma genitalium ftsZ null mutant by gene replacement to investigate the role of this gene and the presence of alternative cell division mechanisms in this minimal bacterium. Our results demonstrate that ftsZ is non‐essential for cell growth and reveal that, in the absence of the FtsZ protein, M. genitalium can manage feasible cell divisions and cytokinesis using the force generated by its motile machinery. This is an alternative mechanism, completely independent of the FtsZ protein, to perform cell division by binary fission in a microorganism. We also propose that the mycoplasma cytoskeleton, a complex network of proteins involved in many aspects of the biology of these microorganisms, may have taken over the function of many genes involved in cell division, allowing their loss in the regressive evolution of the streamlined mycoplasma genomes.  相似文献   

13.
The aspS gene encoding Aspartyl-tRNA synthetase (AspRS) from a thermotolerant acetic acid bacterium, Acetobacter pasteurianus SKU1108, has been cloned and characterized. The open reading frame (ORF) of the aspS gene consists of 1,788 bp, encoding 595 amino acid residues. The highly conserved Gly-Val-Asp-Arg ATP binding motif (motif 3) is located at the position 537–540 in the C-terminus. Deletion analysis of the aspS gene upstream region suggested that the promoter is around 173 bp upstream from the ATG initiation codon. Interestingly, transformation with the plasmids pGEM-T138, pUC138, and pCM138 synthesizing 138 amino acid C-terminal fragments of AspRS, that carry the ATP binding domain, caused E. coli cell lengthening at 37 and 42°C. Moreover, E. coli harboring pUC595 (synthesizing all 595 amino acids) and a disordered aspS gene in pGEM-T138 had normal rod shapes. The normal rod shape was observed in E. coli harboring pD539V following site-directed mutagenesis of the ATP binding domain. We propose that over-production of truncated C-terminal peptides of AspRS may cause sequestration of intracellular ATP in E. coli, leaving less ATP for cell division or shaping cell morphology.  相似文献   

14.
Boberek JM  Stach J  Good L 《PloS one》2010,5(10):e13745

Background

Berberine is a plant alkaloid that is widely used as an anti-infective in traditional medicine. Escherichia coli exposed to berberine form filaments, suggesting an antibacterial mechanism that involves inhibition of cell division. Berberine is a DNA ligand and may induce filamentation through induction of the SOS response. Also, there is biochemical evidence for berberine inhibition of the cell division protein FtsZ. Here we aimed to assess possible berberine mechanism(s) of action in growing bacteria using genetics tools.

Methodology/Principal Findings

First, we tested whether berberine inhibits bacterial growth through DNA damage and induction of the SOS response. The SOS response induced by berberine was much lower compared to that induced by mitomycin C in an SOS response reporter strain. Also, cell filamentation was observed in an SOS-negative E. coli strain. To test whether berberine inhibits FtsZ, we assessed its effects on formation of the cell division Z-rings, and observed a dramatic reduction in Z-rings in the presence of berberine. We next used two different strategies for RNA silencing of ftsZ and both resulted in sensitisation of bacteria to berberine, visible as a drop in the Minimum Inhibitory Concentration (MIC). Furthermore, Fractional Inhibitory Concentration Indices (FICIs) showed a high level of synergy between ftsZ silencing and berberine treatment (FICI values of 0.23 and 0.25 for peptide nucleic acid- and expressed antisense RNA-based silencing of ftsZ, respectively). Finally, over-expression of ftsZ led to a mild rescue effect in berberine-treated cells.

Conclusions

The results argue against DNA binding as the primary mechanism of action of berberine and support the hypothesis that its antibacterial properties are due to inhibition of the cell division protein FtsZ. In addition, the genetic approach used here provides a means to rapidly test the activity of other putative FtsZ inhibitors.  相似文献   

15.
Segments of yeast (Saccharomyces cerevisiae) DNA cloned on various plasmid vectors in Escherichia coli can be functionally expressed to produce active enzymes. We have identified several ColE1-DNA(yeast) plasmids capable of complementing argH mutations, including deletions, in E. coli. Variants of the original transformants that grow faster on selective media and contain higher levels of the complementing enzyme activity (argininosuccinate lyase) can be readily isolated. The genetic alterations leading to increased expression of the yeast gene are associated with the cloned yeast DNA segment, rather than the host genome. The yeast DNA segment cloned in these plasmids also specifies a suppressor of the leuB6 mutation in E. coli. The argH and leuB6 complementing activities are expressed from discrete regions of the cloned yeast DNA segment, since the two genetic functions can be separated on individual recloned restriction fragments. The ease with which the bacterial cell can achieve functional high-level gene expression from cloned yeast DNA indicates that there are no significant barriers preventing expression of many yeast genes in E. coli.  相似文献   

16.
17.
Summary Cells of Escherichia coli which produce high levels of the sfiA protein are UV-sensitive and filament extensively. It has been postulated that the sfiA protein is a division inhibitor which interacts with the ftsZ protein (formerly called sfiB or sulB) leading to cell division arrest. Under certain conditions, a similar division inhibition is observed with cells harboring a mutationally altered tsM allele, another division gene which was postulated to code for a division inhibitor or a controlling effector thereof (Drapeau et al.) (1984). In this communication, we report on the properties of ftsZ mutants isolated under conditions which brought no selective pressure. These mutants have either an increased sensitivity to UV irradiation or filament drastically following a nutritional shift-up, or both, or even cannot grow in a rich medium. They presumably possess a ftsZ protein which responds more readily to the inhibitory action of the wild type sfiA or the mutationally altered tsM1 protein since the phenotypic expressions associated with the mutations are not observed in the presence of the sfiA11 mutation or are amplified when the ftsZ mutant cells harbor the tsM1 allele. These results further support earlier suggestions that sfiA modulates ftsZ activity and establish tsM as an additional regulatory element thereof. In addition, it is shown that E. coli strain B is a naturally occurring ftsZ mutant.  相似文献   

18.
19.
《Gene》1996,173(2):121-127
The xmnIRM genes from Xanthomonas manihotis 7AS1 have been cloned and expressed in Escherichia coli. The nucleotide (nt) sequences of both genes were determined. The XmnI methyltransferase (MTase)-encoding gene is 1861 by in length and codes for 620 amino acids (aa) (68660 Da). The restriction endonuclease (ENase)-encoding gene is 959 by long and therefore codes for a 319-aa protein (35275 Da). The two genes are aligned tail to tail and they overlap at their respective stop codons. About 4 × 104 units/g wet cell paste of R·XmnI was obtained following IPTG induction in a suitable E. coli host. The xmnIR gene is expressed from the T7 promoter. M·XmnI probably modifies the first A in the sequence, GAA(N)4TTC. The xmnIR and M genes contain regions of conserved similarity and probably evolved from a common ancestor. M·XmnI is loosely related to M·EcoRI. The XmnI R-M system and the type-I R-M systems probably derived from a common ancestor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号