首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calelectrin is a calcium-binding protein of Mr 36 000 which has previously been shown to be associated with membranes of the cholinergic synapse in a calcium-dependent manner. We report here that calelectrin was solubilized from the electric organ of Torpedo marmorata in the absence of calcium together with proteins of Mr 54 000 and Mr 15 000. In cholinergic nerve endings isolated from the electric organ only calelectrin was solubilized in a calcium-dependent manner. A specific antiserum to calelectrin was used to localize the antigen by immunofluorescence microscopy on sections of electric organ and showed that calelectrin is distributed throughout the postsynaptic cell. Calelectrin was also detected in axons and in the cell bodies of the cholinergic neurones where it was concentrated in discrete patches throughout the cells. Electric organ tissue was processed to localize calelectrin with the electron microscope using an immunoperoxidase method. The most intense staining was observed on the cytoplasmic face of the acetylcholine receptor-containing postsynaptic membrane and also associated with the intracellular filaments of the electrocyte. The intensity of staining associated with these structures could be greatly reduced by preincubating the tissue with calcium chelators. In nerve terminals calelectrin was associated with synaptic vesicles in a polarized fashion. Calelectrin was also found on the cytoplasmic face of the synaptosomal plasma membrane and associated with neurofilaments. No extracellular staining was ever observed. Our results strongly support our original hypothesis that calelectrin is a calcium-regulated component of intracellular structure associated both with membranes and filaments.  相似文献   

2.
Mammary glands contain a group of calcium-sensitive proteins that bind to membranes in a calcium-dependent manner. Using the calcium-dependent binding to hydrophobic surfaces in combination with conventional techniques, we have purified the 70 kDa mammary calcium-binding protein (70 kDa M-CBP) to homogeneity. Antisera prepared to the 70 kDa M-CBP or to bovine liver 67 kDa calelectrin reacted in immunoblot analysis with the 70 kDa M-CBP antigen and with several additional mammary CBP species in crude tissue homogenates. Limited proteolysis of the 70 kDa M-CBP produced smaller immunoreactive species; extensive proteolysis resulted in more complete degradation of the protein. Identical data were obtained with digestion of 67 kDa calelectrin. The pl for the 70 kDa M-CBP was determined to be approximately 5.8; the same value reported for 67 kDa calelectrin. Phosphorylation of 70 kDa M-CBP was not detected in epithelial cell culture metabolic labeling. Immunohistochemical localization showed the protein to be located in ductal epithelia of virgin mouse mammary glands with a pattern of increased staining of the basal portions of the cells. Some stromal cells were also reactive. Apparently, the 70 kDa M-CBP and 67 kDa calelectrin are the same protein. Furthermore, like the 32.5 calelectrin (endonexin) and calpactin I/p36/lipocortin II, the 70 kDa protein appears to be a ductal epithelial cell associated protein in the mammary gland.  相似文献   

3.
Endonexin is a 32kDa, calcium-dependent membrane-binding protein that is one of a group of proteins that binds to chromaffin granule membranes and may regulate membrane fusion events occurring during exocytosis. In this study an oligonucleotide probe that codes for a highly conserved, repeated sequence present in this and related proteins was used to isolate a 2,048 nucleotide cDNA encoding endonexin from a bovine liver cDNA library. The translated amino acid sequence of endonexin shows the four domain structure characteristic of proteins in this class. The nucleotide sequence is 55 to 61% identical to that of the related membrane-binding proteins lipocortin, calpactin, endonexin II and (half of) 68kDa calelectrin. Southern blot analysis of bovine genomic DNA suggests the presence of a single gene for this protein. A consensus nucleotide sequence (TCTGGGAACTTC) was identified in the 5' nontranslated portion of the endonexin mRNA that is also represented in the messages for calpactin and endonexin II.  相似文献   

4.
We have purified three 35-kDa calcium- and phospholipid-binding proteins from rat liver. These three calcimedins bind to phosphatidylserine in a calcium-dependent manner and have been termed 35 alpha, 35 beta, and 35 gamma based on their relative charge as determined by isoelectric focusing. Purification of the three 35-kDa calcimedins is achieved by phenyl-Sepharose, ion exchange, and gel filtration chromatography. Antibody was produced against the annexin consensus peptide, Lys-Ala-Met-Lys-Gly-Leu-Gly-Thr-Asp-Glu, which was derived from the sequence of several Ca2+/phospholipid-binding proteins including calpactin, lipocortin, endonexin II, 67-kDa calelectrin, lymphocyte 68-kDa protein, and protein II. Recognition of each 35-kDa calcimedin by anticonsensus sequence antibody places them in this protein family. Antibodies against each 35-kDa calcimedin were raised and purified by antigen-affinity chromatography. Each antibody is monospecific for the respective 35-kDa calcimedin. Immunological cross-reactivity defines 35 alpha, 35 beta, and 35 gamma as lipocortins III, IV, and V, respectively. Surveys by immunoblot analysis using these monospecific antibodies demonstrate a markedly different tissue expression pattern for each 35-kDa calcimedin. Furthermore, the levels of 35 alpha, 35 beta, and 35 gamma are differentially regulated in maturing rat ovary and uterus. Each calcimedin has been localized by indirect immunofluorescence within specific cell types. These results support the concept that mediation of the intracellular calcium signal can occur via multiple pathways through several related yet independent mediator proteins.  相似文献   

5.
Two 67 kDa proteins adsorbed to membranes in the presence of Ca2+ have been purified to homogeneity from pig lung using conventional procedures, followed by calcium-dependent affinity chromatography on polyacrylamide-immobilized phosphatidylserine. The two proteins were, respectively, excluded (67E) and retained (67R) on the column in the presence of Ca2+. On the basis of amino acid composition and isoelectric point, 67R was identified as 67 kDa calelectrin/calcimedin, whereas 67E could be differentiated from albumin, calregulin, 67 kDa fragment of protein kinase C and surfactant-associated proteins. Only 67R was slightly phosphorylated by protein kinase C, reacted with an antibody raised against 32.5 kDa endonexin and inhibited pig pancreas phospholipase A2 in a way similar to that of lipocortin or endonexin. These data bring further support to the view that inhibition of phospholipase A2 by lipocortin or other related proteins involves interaction with the lipid/water interface. They also provide evidence for a new kind of Ca2+-binding protein (67E), whose role still remains to be determined.  相似文献   

6.
Endonexin II is a member of the family of Ca2+-dependent phospholipid binding proteins known as annexins. We cloned human endonexin II cDNA and expressed it in Escherichia coli. The apparent size and Ca2+-dependent phospholipid binding properties of purified recombinant endonexin II were indistinguishable from those of the placental protein. A single mRNA of approximately 1.6 kilobase pairs was found to be expressed in human cell lines and placenta and was in close agreement with the length of the cDNA clone (1.59 kilobase pairs). The cDNA predicted a 320-amino acid protein with a sequence that was in agreement with the previously determined partial amino acid sequence of endonexin II isolated from placenta. Endonexin II contained 58, 46, and 43% sequence identity to protein II, calpactin I (p36, protein I), and lipocortin I (p35), respectively. The partial sequence of bovine endonexin I was aligned with the sequence of endonexin II to give 63% sequence identity. Like these other proteins, endonexin II had a 4-fold internal repeat of approximately 70 residues preceded by an amino-terminal domain lacking similarity to the repeated region. It also had significant sequence identity with 67-kDa calelectrin (p68), a protein with an 8-fold internal repeat. Comparing the amino-terminal domains of these four proteins of known sequence revealed that, in general, only endonexin II and protein II had significant sequence identity (29%). Endonexin II was not phosphorylated by Ca2+/phospholipid-dependent enzyme (protein kinase C) even though it contained a threonine at a position analogous to the protein kinase C phosphorylation sites of lipocortin I, calpactin I, and protein II.  相似文献   

7.
A new family of proteins (annexins) that bind to membranes at micromolar free Ca2+ has been recognized. Its members include an EGF-receptor kinase substrate (p35), a retroviral tyrosine kinase substrate (p36), the liver protein endonexin (p32) and an electric ray protein, calelectrin. Each protein contains four sequence repeats with a further 2-fold internal homology. Using the predicted secondary structure and pattern of conserved hydrophobic residues in each repeat, we have built a three-dimensional model that is largely isostructural with the known molecular conformation of bovine intestinal calcium-binding protein. The final (energy-refined) model had a core formed from the conserved hydrophobic residues. It differed from ICaBP principally in the length of the two Ca2+-binding loops with only one loop being able to bind. The model suggests a mechanism for interaction of these new Ca2+-binding proteins with phospholipid bilayers.  相似文献   

8.
Calcimedin is a group of proteins, originally isolated from chicken gizzard, which are able to bind to several hydrophobic matrices in the presence of Ca2+. Although the molecular properties have been partially discovered, the physiological functions of calcimedins have not yet been clearly defined. In this study, we describe the isolation and characterization of 67-kDa calcimedin and its 34-kDa fragment from chicken gizzard. Both structural and functional studies establish that 67-kDa calcimedin is a member of the calpactin/lipocortin family: it displays phospholipase A2 inhibitory activity, Ca2(+)-dependent F-actin binding and phospholipid binding activity similar to those of calpactins (lipocortins). By comparing the sequence of 67-kDa calcimedin with the predicted sequence of 67-kDa calelectrin, we concluded that the primary structure of these 67-kDa proteins is highly conserved. In particular, the sequences GLGTDEGAIIXVLTQR and EGAGTDESTLIEIMATR conform with the annexin consensus sequence which is characteristic of the calpactin/lipocortin family. A 34-kDa fragment of 67-kDa calcimedin was also purified and their relatedness has been confirmed by antibody cross-reactivity. The sequence data further support that the 34-kDa fragment is derived from the C-terminal portion of 67-kDa calcimedin by limited proteolysis. The 34-kDa fragment, which contains the annexin consensus sequence, preserves the phospholipase A2 inhibitory activity, and binds F-actin and phospholipids.  相似文献   

9.
The major 68-kDa protein found selectively in the faster of the two subcomponents of slow axonal transport [group IV or slow component b (SCb)] in the rat sciatic nerve has been characterized. It was found to contain two distinct classes of proteins, S1 and S2, both of which have isoelectric points of 5.7, but differ in their solubility in the presence of calcium. The S1 protein, which contributes up to 70% of the 68-kDa component, was soluble in the presence or absence of calcium, whereas the S2 protein was bound to the cytoskeleton in a calcium-dependent manner. Further characterization of the two proteins by peptide mapping and immunological methods revealed that the S1 protein belonged to a family of proteins related to the 70-kDa heat shock protein, whereas the S2 protein was identical to 68-kDa calelectrin (annexin VI). Selective occurrence in SCb of these proteins with potential abilities to regulate protein-protein or protein-membrane interactions suggests that they may play important roles in the control of cytoskeletal organization in the axon, because SCb contains mainly cytoskeletal proteins in a more dynamic form compared with the slowest rate component, slow component a, which is enriched in the stably polymerized form of these proteins.  相似文献   

10.
Abstract. Calelectrins are a family of antigenically related Ca2+-binding proteins that have only recently been described. They have the important property of binding to membranes only in the presence of Ca2+. We systematically studied the tissue localization of one calelectrin, the 32.5-kilodalton species, in rats using immunocytochemistry. We found that high levels were exclusively present in the epithelial cells of bile and pancreatic ducts, renal collecting ducts, bronchial epithelia, and brain ependyma. In all of these organs, the other cells were not immunoreactive. In addition, strong immunoreactivity was found in the intercalated disks of myocardial cells, and mild immunoreactivity was observed in several endocrine tissues. In contrast, the cellular distribution of the 67-kilodalton calelectrin was more diffuse, involving most parenchymal cells in addition to the already-mentioned cells. Due to the presence of high levels of 32.5-kilodalton calelectrin in some cell types, this protein may be used as a histochemical marker for differentiated ductal epithelial cells, some specialized epithelia, myocardial cells, and Paneth cells.  相似文献   

11.
We recently showed that mammary glands contain a novel class of calcium-binding proteins (CBPs) that bind to membranes in a calcium-dependent manner. We have also established that these mammary CBPs are equivalent to the calelectrins and calpactin I/p36. Since it has been suggested that these proteins might be involved in exocytosis, we examined mammary glands for these CBPs during secretory differentiation. Immunohistochemical examination showed glands from virgin animals to be rich in calelectrins and calpactin I/p36, while glands from lactating animals contained little immunoreactive material. In addition, silver-staining and immunoblot estimation of the CBPs in lysates from collagenase harvested secretory epithelia showed these proteins to be significantly reduced compared to nonsecretory epithelia. Close examination of the CBP immunoreactive cells of the mammary gland shows that ductal cells are prominent in their staining and that the immunoreactive material is associated with the cell surface. Also, in juvenile glands the myoepithelial stem cells (cap cells) of the elongating end bud are devoid of the CBPs. In contrast to the in vivo data, epithelia cultivated on collagen gels demonstrate comparable levels of the CBPs in both nonsecretory and secretory monolayers. The in vivo data indicate that the CBPs are developmentally regulated during mammary gland differentiation such that secretory epithelia are essentially devoid of these novel proteins. Furthermore, a role for calelectrin and calpactin I/p36 in exocytotic casein secretion is questioned.  相似文献   

12.
In a new approach to isolating proteins which participate in the Ca2+-dependent regulation of membrane traffic in animal cells, two new Ca2+-binding proteins (Mr 67 000 and 32 500) have been identified in and purified from bovine liver, brain, and adrenal medulla. These proteins specifically and reversibly bind to chromaffin granule membranes at low Ca2+ concentrations (half-maximal binding at 5.5 microM Ca2+) and greatly potentiate the Ca2+-induced aggregation of these membranes at higher concentrations (above 10 microM). In the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetate, the isolated proteins have Stokes radii of 3.40 nm (Mr 67 000) and 2.53 nm (Mr 32 500) as estimated by gel filtration and therefore occur as monomers. They are slightly acidic proteins with pI's of 5.85 and 5.60. In bovine tissues, both proteins and a third protein of Mr 35 000 cross-react immunologically with each other and with Torpedo calelectrin (Mr 34 000) and are therefore identified as mammalian calelectrins. In all tissues of Torpedo marmorata tested, only a single molecular mass form of calelectrin exists, whereas multiple forms of calelectrin exist in mammalian tissues, indicating gene duplication during evolution. We suggest that the evolutionary conservation and diversification, the high tissue concentrations, and the Ca2+-specific interactions of the calelectrins make them candidates for Ca2+-dependent regulators of membrane events in animal cells.  相似文献   

13.
Transglutaminases (TGase; protein-glutamine: amine gamma-glutamyl-transferase) are a family of calcium-dependent acyl-transfer enzymes ubiquitously expressed in mammalian cells and responsible for catalyzing covalent cross-links between proteins or peptides. A series of recent crystal structures have revealed the overall architecture of TGase enzymes, and provided a deep look at their active site, calcium and magnesium ions, and the manner by which guanine nucleotides interact with this enzyme. These structures, backed with extensive biochemical studies, are providing new insights as to how access to the enzyme's active site may be gated through the coordinated changes in cellular calcium and magnesium concentrations and GTP/GDP. Calcium-activated TGase 3 can bind, hydrolyze, and is inhibited by GTP, despite lacking structural homology with other GTP binding proteins. A structure based sequence homology among the TGase enzyme family shows that these essential structural features are shared among other members of the TGase family.  相似文献   

14.
A cDNA for a type II antifreeze protein was isolated from liver of smelt (Osmerus mordax). The predicted protein sequence is homologous to that from sea raven (Hemitripterus americanus) and both show homology to a family of calcium-dependent lectins. Smelt and sea raven belong to taxonomic orders believed to have diverged prior to Cenozoic glaciation. Thus, type II antifreeze proteins appear to have evolved independently in these fish species from pre-existing calcium-dependent lectins. Sequence alignment of the antifreezes and the lectins suggest that these proteins adopt a similar fold, that the sea raven antifreeze has lost its Ca2+ binding sites, and the smelt antifreeze has retained one site. Experiments show that smelt antifreeze protein activity is responsive to Ca2+ but that of sea raven antifreeze protein is not. These results suggest that the type II fish antifreeze proteins and calcium-dependent lectins share a common ancestry, related folding structures, and functional similarity.  相似文献   

15.
Addition of Ca2+ to post-microsomal fractions of bovine adrenal or liver produced a sedimentable complex of membrane vesicles and cytoplasmic proteins. Proteins with apparent mol. wts. 70 000, 36 000 and 32 500 were solubilized from this complex by Ca2+ chelation. The 36 000 mol. wt. protein (p36) was immunoprecipitated by an antiserum specific for pp36, a major substrate for Rous sarcoma virus src-gene tyrosine kinase. This protein was present in many mesenchymal cells and associated with membrane cytoskeleton of bovine fibroblasts in a Ca2+-dependent manner. The 70 000 and 32 500 mol. wt. proteins were widely distributed in established cell lines, but were not clearly associated with cell organelles in tissue sections, nor retained in cytoskeleton preparations. On immunoblots p36 reacted strongly with antibodies produced against the electric fish protein Torpedo calelectrin and the similar Ca2+-binding properties and subunit mol. wts. of these proteins suggests that they might be functionally related. Since Torpedo calelectrin, p70, p36 and p32.5 were bound by lipid vesicles or microsomal membranes at micromolar free Ca2+ concentrations, regulated association with intrinsic membrane components may be involved in the functions of these widespread proteins.  相似文献   

16.
D F Seals  M L Parrish    S K Randall 《Plant physiology》1994,106(4):1403-1412
A 42-kD, calcium-dependent, membrane-binding protein (VCaB42) was associated with partially purified vacuole membrane. Membrane-dissociation assays indicated that VCaB42 binding to vacuole membranes was selective for calcium over other cations and that 50% of VCaB42 remained membrane bound at 61 +/- 11 nM free calcium. A 13-amino acid sequence obtained from VCaB42 showed 85% similarity with the endonexin fold, a sequence found in the annexin family of proteins that is thought to be essential for calcium and lipid binding. The greatest similarity in amino acid sequence was observed with annexin VIII (VAC-beta). The calcium-binding properties and sequence similarities suggest that VCaB42 is a member of the annexin family of calcium-dependent, membrane-binding proteins. Functional assays for VCaB42 on vacuole membrane transport processes indicated that it did not significantly affect the initial rate of calcium uptake into vacuole membrane vesicles. Because VCaB42 is vacuole localized (likely on the cytosolic surface of the vacuole) and is 50% dissociated within the physiological range of cytosolic free calcium, we hypothesize that this protein is a sensor that monitors cytosolic calcium levels and transmits that information to the vacuole.  相似文献   

17.
We report a fast (less than 1 day) and efficient (2-3 mg protein/100 g tissue) isolation method for calelectrin, a protein of Mr 34,000 in the electric organ of Torpedo marmorata that binds to membranes in the presence of Ca2+. Purified protein was used to investigate the nature of its interaction with membranes and with Ca2+. Calelectrin binds to liposomes composed of total extractable lipids from the electric organ in a Ca2+-dependent and -specific manner with half-maximal binding between 3 and 7 microM free Ca2+. This binding is totally inhibited by 1 mM mercaptoethanol. It is also shown that calelectrin directly binds Ca2+ in solution by two techniques: at 1 and 10 microM Ca2+ it binds 45Ca2+ as measured by gel permeation chromatography, and it contains saturable Tb3+-binding sites that are Ca2+-displaceable. An investigation of the protein's endogenous fluorescence shows that although it contains both tryptophan and tyrosine, there is no change in the apparent quantum yield as a function of Ca2+. Ca2+-dependent hydrophobic affinity chromatography of the total soluble proteins from Torpedo electric organ shows that Torpedo calelectrin, like calmodulin and mammalian calelectrins, is specifically retained in the presence of Ca2+ and eluted by EGTA. Calelectrin also contains high-affinity sites for hydrophobic fluorescence probes such as N-phenyl-1-naphthylamine, 2-CP-toluidinylnaphthalene-6-sulfonic acid, and 1-anilinonaphthalene-8-sulfonic acid, which again unlike calmodulin, show no changes as a function of Ca2+. We conclude that calelectrin is a Ca2+-binding protein whose binding to the lipid moieties of membranes is regulated by physiological change in the Ca2+ concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Calelectrins are a family of antigenically related Ca2+-binding proteins that have only recently been described. They have the important property of binding to membranes only in the presence of Ca2+. We systematically studied the tissue localization of one calelectrin, the 32.5-kilodalton species, in rats using immunocytochemistry. We found that high levels were exclusively present in the epithelial cells of bile and pancreatic ducts, renal collecting ducts, bronchial epithelia, and brain ependyma. In all of these organs, the other cells were not immunoreactive. In addition, strong immunoreactivity was found in the intercalated disks of myocardial cells, and mild immunoreactivity was observed in several endocrine tissues. In contrast, the cellular distribution of the 67-kilodalton calelectrin was more diffuse, involving most parenchymal cells in addition to the already-mentioned cells. Due to the presence of high levels of 32.5-kilodalton calelectrin in some cell types, this protein may be used as a histochemical marker for differentiated ductal epithelial cells, some specialized epithelia, myocardial cells, and Paneth cells.  相似文献   

19.
Cadherins are a family of integral membrane glycoproteins that mediate homophilic, calcium-dependent cell adhesion in vertebrate species. The primary structures of six members of the cadherin family have recently been determined. The extracellular portion of these proteins is composed of five domains, the first of which is the most highly conserved among cadherins. Previous searches of protein sequence databases have revealed little or no sequence homology between cadherins and other proteins. Here we report that the first extracellular domain of cadherins exhibits substantial sequence homology with the amino termini of influenza strain A hemagglutinins. These regions of sequence homology have been shown to be functionally important in both cadherins and hemagglutinins. Our observations suggest that a functional domain of cadherins is conserved among other proteins.  相似文献   

20.
Calcium ions exert their effects in part via interactions with a wide variety of intracellular calcium-binding proteins. One class of these proteins shares a common calcium-binding motif, the EF-hand. A consensus amino acid sequence for this motif has aided the identification of new members of this family of EF-hand proteins, which now has over 200 members. A few of these proteins are present in all cells, whereas the vast majority are expressed in a tissue-specific fashion. The physiological function of a few of these proteins is known to be achieved via a calcium-dependent interaction with other proteins, thereby regulating their activity. Some members, like parvalbumin, calbindin, and calretinin, proved to be useful neuronal markers for a variety of functional brain systems and their circuitries. Their major role is assumed to be buffering, transport of Ca2+, and regulation of various enzyme systems. Since cellular degeneration is accompanied by impaired Ca2+ homeostasis, a protective role for Ca(2+)-binding proteins in certain neuron populations has been postulated. Another protein family are the annexins, members of which interact with phospholipids and cellular membranes in a calcium-dependent manner. In some cases members of the annexin family were even found to interact with EF-hand proteins. Certain annexins have been suggested to be involved in anti-inflammatory response, inhibition of blood coagulation, membrane trafficking or cytoskeletal organization, but several of these functions have been questioned recently. The elucidation of the interactions and functions of the majority of these proteins remains a challenging task for the coming years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号