首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The extractions of glucose, lactate, pyruvate and free fatty acids by dog heart in vivo were calculated from measurements of their arterial and coronary sinus blood concentration. Elevation of plasma free fatty acid concentrations by infusion of intralipid and heparin resulted in increased extraction of free fatty acids and diminished extractions of glucose, lactate and pyruvate by the heart. It is suggested that metabolism of free fatty acids by the heart in vivo, as in vitro, may impair utilization of these substrates. These effects of elevated plasma free fatty acid concentrations on extractions by the heart in vivo were reversed by injection of dichloroacetate, which also improved extraction of lactate and pyruvate by the heart in vivo in alloxan diabetes. 2. Sodium dichloroacetate increased glucose oxidation and pyruvate oxidation in hearts from fed normal or alloxan-diabetic rats perfused with glucose and insulin. Dichloroacetate inhibited oxidation of acetate and 3-hydroxybutyrate and partially reversed inhibitory effects of these substrates on the oxidation of glucose. In rat diaphragm muscle dichloroacetate inhibited oxidation of acetate, 3-hydroxybutyrate and palmitate and increased glucose oxidation and pyruvate oxidation in diaphragms from alloxan-diabetic rats. Dichloroacetate increased the rate of glycolysis in hearts perfused with glucose, insulin and acetate and evidence is given that this results from a lowering of the citrate concentration within the cell, with a consequent activation of phosphofructokinase. 3. In hearts from normal rats perfused with glucose and insulin, dichloroacetate increased cell concentrations of acetyl-CoA, acetylcarnitine and glutamate and lowered those of aspartate and malate. In perfusions with glucose, insulin and acetate, dichloroacetate lowered the cell citrate concentration without lowering the acetyl-CoA or acetylcarnitine concentrations. Measurements of specific radioactivities of acetyl-CoA, acetylcarnitine and citrate in perfusions with [1-(14)C]acetate indicated that dichloroacetate lowered the specific radio-activity of these substrates in the perfused heart. Evidence is given that dichloroacetate may not be metabolized by the heart to dichloroacetyl-CoA or dichloroacetylcarnitine or citrate or CO(2). 4. We suggest that dichloroacetate may activate pyruvate dehydrogenase, thus increasing the oxidation of pyruvate to acetyl-CoA and acetylcarnitine and the conversion of acetyl-CoA into glutamate, with consumption of aspartate and malate. Possible mechanisms for the changes in cell citrate concentration and for inhibitory effects of dichloroacetate on the oxidation of acetate, 3-hydroxybutyrate and palmitate are discussed.  相似文献   

2.
1. Monochloroacetate, dichloroacetate, trichloroacetate, difluoroacetate, 2-chloropropionate, 2,2'-dichloropropionate and 3-chloropropionate were inhibitors of pig heart pyruvate dehydrogenase kinase. Dichloroacetate was also shown to inhibit rat heart pyruvate dehydrogenase kinase. The inhibition was mainly non-competitive with respect to ATP. The concentration required for 50% inhibition was approx. 100mum for the three chloroacetates, difluoroacetate and 2-chloropropionate and 2,2'-dichloropropionate. Dichloroacetamide was not inhibitory. 2. Dichloroacetate had no significant effect on the activity of pyruvate dehydrogenase phosphate phosphatase when this was maximally activated by Ca(2+) and Mg(2+). 3. Dichloroacetate did not increase the catalytic activity of purified pig heart pyruvate dehydrogenase. 4. Dichloroacetate, difluoroacetate, 2-chloropropionate and 2,2'-dichloropropionate increased the proportion of the active (dephosphorylated) form of pyruvate dehydrogenase in rat heart mitochondria with 2-oxoglutarate and malate as respiratory substrates. Similar effects of dichloroacetate were shown with kidney and fat-cell mitochondria. Glyoxylate, monochloroacetate and dichloroacetamide were inactive. 5. Dichloroacetate increased the proportion of active pyruvate dehydrogenase in the perfused rat heart, isolated rat diaphragm and rat epididymal fat-pads. Difluoroacetate and dichloroacetamide were also active in the perfused heart, but glyoxylate, monochloroacetate and trichloroacetate were inactive. 6. Injection of dichloroacetate into rats starved overnight led within 60 min to activation of pyruvate dehydrogenase in extracts from heart, psoas muscle, adipose tissue, kidney and liver. The blood concentration of lactate fell within 15 min to reach a minimum after 60 min. The blood concentration of glucose fell after 90 min and reached a minimum after 120 min. There was no significant change in plasma glycerol concentration. 7. In epididymal fatpads dichloroacetate inhibited incorporation of (14)C from [U-(14)C]glucose, [U-(14)C]fructose and from [U-(14)C]lactate into CO(2) and glyceride fatty acid. 8. It is concluded that the inhibition of pyruvate dehydrogenase kinase by dichloroacetate may account for the activation of pyruvate dehydrogenase and pyruvate oxidation which it induces in isolated rat heart and diaphragm muscles, subject to certain assumptions as to the distribution of dichloroacetate across the plasma membrane and the mitochondrial membrane. 9. It is suggested that activation of pyruvate dehydrogenase by dichloroacetate could contribute to its hypoglycaemic effect by interruption of the Cori and alanine cycles. 10. It is suggested that the inhibitory effect of dichloroacetate on fatty acid synthesis in adipose tissue may involve an additional effect or effects of the compound.  相似文献   

3.
1. Starvation for 48 hr doubled the rate of gluconeogenesis from lactate and pyruvate in perfused chicken kidney, but did not change the rate of production of glucose from malate, succinate, or alpha-ketoglutarate. 2. Amino-oxyacetate and D-malate inhibited the production of glucose from lactate and from pyruvate by 55% in each case. Quinolinate reduced the production of glucose from lactate and from pyruvate by 50% in both fed and starved chickens, but had no effect on the production of glucose from intermediates in the citric acid cycle. 3. Starvation increased the rate of formation of mitochondrial phosphoenolpyruvate from pyruvate, but had no effect on the rate of formation of mitochondrial phosphoenolpyruvate from malate.  相似文献   

4.
The activity of pyruvate dehydrogenase was assayed in extracts of rat hearts perfused in vitro with media containing glucose and insulin±acetate±dichloroacetate. Dichloroacetate (100μm, 1mm or 10mm) increased the activity of pyruvate dehydrogenase in perfusions with glucose or glucose+acetate. Evidence is given that dichloroacetate may facilitate the conversion of pyruvate dehydrogenase from an inactive (phosphorylated) form into an active (dephosphorylated) form.  相似文献   

5.
The proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart was decreased by alloxan-diabetes or by perfusion with media containing acetate, n-octanoate or palmitate. The total activity of the dehydrogenase was unchanged. 2. Pyruvate (5 or 25mM) or dichloroacetate (1mM) increased the proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart, presumably by inhibiting the pyruvate dehydrogenase kinase reaction. Alloxan-diabetes markedly decreased the proportion of active dehydrogenase in hearts perfused with pyruvate or dichloroacetate. 3. The total activity of pyruvate dehydrogenase in mitochondria prepared from rat heart was unchanged by diabetes. Incubation of mitochondria with 2-oxo-glutarate plus malate increased ATP and NADH concentrations and decreased the proportion of active pyruvate dehydrogenase. The decrease in active dehydrogenase was somewhat greater in mitochondria prepared from hearts of diabetic rats than in those from hearts of non-diabetic rats. Pyruvate (0.1-10 mM) or dichloroacetate (4-50 muM) increased the proportion of active dehydrogenase in isolated mitochondria presumably by inhibition of the pyruvate dehydrogenase kinase reaction. They were much less effective in mitochondria from the hearts of diabetic rats than in those of non-diabetic rats. 4. The matrix water space was increased in preparations of mitochondria from hearts of diabetic rats. Dichloroacetate was concentrated in the matrix water of mitochondria of non-diabetic rats (approx. 16-fold at 10 muM); mitochondria from hearts of diabetic rats concentrated dichloroacetate less effectively. 5. The pyruvate dehydrogenase phosphate phosphatase activity of rat hearts and of rat heart mitochondria (approx. 1-2 munit/unit of pyruvate dehydrogenase) was not affected by diabetes. 6. The rate of oxidation of [1-14C]pyruvate by rat heart mitochondria (6.85 nmol/min per mg of protein with 50 muM-pyruvate) was approx. 46% of the Vmax. value of extracted pyruvate dehydrogenase (active form). Palmitoyl-L-carnitine, which increased the ratio of [acetyl-CoA]/[CoA] 16-fold, inhibited oxidation of pyruvate by about 90% without changing the proportion of active pyruvate dehydrogenase.  相似文献   

6.
1. Effects of alpha-cyano-4-hydroxycinnamate and alpha-cyanocinnamate on a number of enzymes involved in pyruvate metabolism have been investigated. Little or no inhibition was observed of any enzyme at concentrations that inhibit completely mitochondrial pyruvate transport. At much higher concentrations (1 mM) some inhibition of pyruvate carboxylase was apparent. 2. Alpha-Cyano-4-hydroxycinnamate (1-100 muM) specifically inhibited pyruvate oxidation by mitochondria isolated from rat heart, brain, kidney and from blowfly flight muscle; oxidation of other substrates in the presence or absence of ADP was not affected. Similar concentrations of the compound also inhibited the carboxylation of pyruvate by rat liver mitochondria and the activation by pyruvate of pyruvate dehydrogenase in fat-cell mitochondria. These findings imply that pyruvate dehydrogenase, pyruvate dehydrogenase kinase and pyruvate carboxylase are exposed to mitochondrial matrix concentrations of pyruvate rather than to cytoplasmic concentrations. 3. Studies with whole-cell preparations incubated in vitro indicate that alpha-cyano-4-hydroxycinnamate or alpha-cyanocinnamate (at concentrations below 200 muM) can be used to specifically inhibit mitochondrial pyruvate transport within cells and thus alter the metabolic emphasis of the preparation. In epididymal fat-pads, fatty acid synthesis from glucose and fructose, but not from acetate, was markedly inhibited. No changes in tissue ATP concentrations were observed. The effects on fatty acid synthesis were reversible. In kidney-cortex slices, gluconeogenesis from pyruvate and lactate but not from succinate was inhibited. In the rat heart perfused with medium containing glucose and insulin, addition of alpha-cyanocinnamate (200 muM) greatly increased the output and tissue concentrations of lactate plus pyruvate but decreased the lactate/pyruvate ratio. 4. The inhibition by cyanocinnamate derivatives of pyruvate transport across the cell membrane of human erythrocytes requires much higher concentrations of the derivatives than the inhibition of transport across the mitochondrial membrane. Alpha-Cyano-4-hydroxycinnamate appears to enter erythrocytes on the cell-membrane pyruvate carrier. Entry is not observed in the presence of albumin, which may explain the small effects when these compounds are injected into whole animals.  相似文献   

7.
Isolated acini from lactating rat mammary gland were incubated with glucose (5 mm) and progesterone. The steroid (0.1 mm) decreased glucose utilization and pyruvate accumulation, but increased the formation of lactate. The production of 14CO2 and 14C-labeled lipid from [1-14C]glucose, and the incorporation of 3H2O into lipid were also inhibited by progesterone. At lower concentrations of progesterone (0.01–0.025 mm) the only effects were an increased [lactate], a decreased [pyruvate], and a consequent rise in the lactate/pyruvate ratio. Addition of dichloroacetate, an activator of pyruvate dehydrogenase, did not reverse these effects and assays of active pyruvate dehydrogenase showed no inactivation by progesterone. The steroid did not affect pyruvate utilization but markedly inhibited the removal of lactate, suggesting that progesterone causes a decreased reoxidation of cytosolic NADH and thus alters the cytosolic redox state. The findings are discussed in relation to the physiological role of progesterone during pregnancy and lactation.  相似文献   

8.
Dichloroacetate (2 mm) stimulated the conversion of [1-14C]lactate to glucose in hepatocytes from fed rats. In hepatocytes from rats starved for 24 h, where the mitochondrial NADHNAD+ ratio is elevated, dichloroacetate inhibited the conversion of [1-14C]lactate to glucose. Dichloroacetate stimulated 14CO2 production from [1-14C]lactate in both cases. It also completely activated pyruvate dehydrogenase and increased flux through the enzyme. The addition of β-hydroxybutyrate, which elevates the intramitochondrial NADHNAD+ ratio, changed the metabolism of [1-14C]lactate in hepatocytes from fed rats to a pattern similar to that seen in hepatocytes from starved rats. Thus, the effect of dichloroacetate on labeled glucose synthesis from lactate appears to depend on the mitochondrial oxidation-reduction state of the hepatocytes. Glucagon (10 nm) stimulated labeled glucose synthesis from lactate or alanine in hepatocytes from both fed and starved rats and in the absence or presence of dichloroacetate. The hormone had no effect on pyruvate dehydrogenase activity whether or not the enzyme had been activated by dichloroacetate. Thus, it appears that pyruvate dehydrogenase is not involved in the hormonal regulation of gluconeogenesis. Glucagon inhibited the incorporation of 10 mm [1-14C]pyruvate into glucose in hepatocytes from starved rats. This inhibition has been attributed to an inhibition of pyruvate dehydrogenase by the hormone (Zahlten et al., 1973, Proc. Nat. Acad. Sci. USA70, 3213–3218). However, dichloroacetate did not prevent the inhibition of glucose synthesis. Nor did glucagon alter the activity of pyruvate dehydrogenase in homogenates of cells that had been incubated with 10 mm pyruvate in the absence or presence of dichloroacetate. Thus, the inhibition by glucagon of pyruvate gluconeogenesis does not appear to be due to an inhibition of pyruvate dehydrogenase.  相似文献   

9.
The relationship of lactate metabolism to renal function was studied in the isolated perfused rat kidney. A new radioisotopic method has been developed that enables the simultaneous measurement of lactate production and consumption in the presence of physiological concentrations of both lactate and glucose. In kidneys from fed rats, when glucose was absent, lactate production was only 12 mumol/h per g dry wt, and in kidneys from starved rats there was no lactate production, indicating that neither the phosphoenolpyruvate/pyruvate substrate cycle nor other analogous cycles for the recycling of lactate carbon are operating in the intact kidney cortex. Lactate production from glucose occurred at a high rate, at the same time as lactate consumption, demonstrating that lactate recycling between renal cortex and medulla can occur in the intact kidney. Lactate production from glucose correlated with glomerular filtration rate (P less than 0.001), urine flow rate (P less than 0.01) and sodium reabsorption (P less than 0.05). There was significant basal lactate production at zero glomerular filtration rate. Lactate consumption was not correlated with any renal function. When Na+ reabsorption was inhibited with the diuretic frusemide, or when filtration was entirely prevented (the 'non'-filtering kidney'), lactate production was decreased by 39% and 50% respectively. Basal lactate production determined in this way was the same as that calculated above by linear regression. Prevention of filtration, but not the addition of frusemide, significantly inhibited lactate consumption. It is concluded that glycolysis is required for medullary Na+ transport, and that some different transport function(s) require lactate oxidation.  相似文献   

10.
1. The activities of pyruvate dehydrogenase in rat lymphocytes and mouse macrophages are much lower than those of the key enzymes of glycolysis and glutaminolysis. However, the rates of utilization of pyruvate (at 2 mM), from the incubation medium, are not markedly lower than the rate of utilization of glucose by incubated lymphocytes or that of glutamine by incubated macrophages. This suggests that the low rate of oxidation of pyruvate produced from either glucose or glutamine in these cells is due to the high capacity of lactate dehydrogenase, which competes with pyruvate dehydrogenase for pyruvate. 2. Incubation of either macrophages or lymphocytes with dichloroacetate had no effect on the activity of subsequently isolated pyruvate dehydrogenase; incubation of mitochondria isolated from lymphocytes with dichloroacetate had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, and the double-reciprocal plot of [1-14C]pyruvate concentration against rate of 14CO2 production was linear. In contrast, ADP or an uncoupling agent increased the rate of 14CO2 production from [1-14C]pyruvate by isolated lymphocyte mitochondria. These data suggest either that pyruvate dehydrogenase is primarily in the a form or that pyruvate dehydrogenase in these cells is not controlled by an interconversion cycle, but by end-product inhibition by NADH and/or acetyl-CoA. 3. The rate of conversion of [3-14C]pyruvate into CO2 was about 15% of that from [1-14C]pyruvate in isolated lymphocytes, but was only 1% in isolated lymphocyte mitochondria. The inhibitor of mitochondrial pyruvate transport, alpha-cyano-4-hydroxycinnamate, inhibited both [1-14C]- and [3-14C]-pyruvate conversion into 14CO2 to the same extent, and by more than 80%. 4. Incubations of rat lymphocytes with concanavalin A had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, but increased the rate of conversion of [3-14C]pyruvate into 14CO2 by about 50%. This suggests that this mitogen causes a stimulation of the activity of pyruvate carboxylase.  相似文献   

11.
Dichloroacetate, an activator of the pyruvate dehydrogenase complex, is known to lower blood glucose, lactate, pyruvate, and alanine when given to diabetic and 24 h fasted rats. Under certain conditions, especially when pyruvate carboxylase is made rate limiting for want of bicarbonate, dichloroacetate effectively inhibits glucose synthesis from lactate by isolated hepatocytes. 2-Chloropropionate also activates the pyruvate dehydrogenase complex, lowers blood glucose, lactate, and pyruvate in 24 h fasted rats, but stimulates gluconeogenesis from lactate or alanine by isolated hepatocytes. Dichloroacetate is catabolized to glyoxylate and thence to oxalate by liver cells, whereas 2-chloropropionate cannot be catabolized to these products. Glyoxylate and oxalate are potent inhibitors of glucose synthesis from lactate, pyruvate, and alanine, but not from dihydroxyacetone. Inhibition is much more pronounced in a bicarbonate-deficient medium, in which pyruvate carboxylase is probably rate limiting for gluconeogenesis. It seems likely, therefore, that the inhibition of lactate gluconeogenesis by dichloroacetate is actually caused by oxalate, which inhibits pyruvate carboxylation. Nevertheless, the major effect of dichloroacetate, and probably the sole effect of 2-chloropropionate, on blood glucose concentration is to limit substrate availability in the blood for hepatic gluconeogenesis. Since oxalic acid stone formation and renal dysfunction may prove to be side effects of any therapeutic application of dichloroacetate, we suggest that further studies on the treatment of hyperglycemia and lactic acidosis with pyruvate dehydrogenase activators be carried out with 2-chloropropionate rather than dichloroacetate.  相似文献   

12.
1. The infusion of sodium dichloroacetate into rats with severe diabetic ketoacidosis over 4h caused a 2mM decrease in blood glucose, and small falls in blood lactate and pyruvate concentrations. Similar findings had been reported in normal rats (Blackshear et al., 1974). In contrast there was a marked decrease in blood ketone-body concentration in the diabetic ketoacidotic rats after dichloroacetate treatment. 2. The infusion of insulin alone rapidly decreased blood glucose and ketone bodies, but caused an increase in blood lactate and pyruvate. 3. Dichloroacetate did not affect the response to insulin of blood glucose and ketone bodies, but abolished the increase of lactate and pyruvate seen after insulin infusion. 4. Neither insulin nor dichloroacetate stimulated glucose disappearance after functional hepatectomy, but both agents decreased the accumulation in blood of lactate, pyruvate and alanine. 5. Dichloroacetate inhibited 3-hydroxybutyrate uptake by the extra-splachnic tissues; insulin reversed this effect. Ketone-body production must have decreased, as hepatic ketone-body content was unchanged by dicholoracetate yet blood concentrations decreased. 6. It was concluded that: (a) dichloroacetate had qualitatively similar effects on glucose metabolism in severely ketotic rats to those observed in non-diabetic starved animals; (b) insulin and dichloroacetate both separately and together, decreased the net release of lactate, pyruvate and alanine from the extra-splachnic tissues, possibly through a similar mechanism; (c) insulin reversed the inhibition of 3-hydroxybutyrate uptake caused by dichloroacetate; (d) dichloroacetate inhibited ketone-body production in severe ketoacidosis.  相似文献   

13.
3-Mercaptopicolinic acid, an inhibitor of gluconeogenesis   总被引:19,自引:16,他引:3  
1. 3-Mercaptopicolinic acid (SK&F 34288) inhibited gluconeogenesis in vitro, with lactate as substrate, in rat kidney-cortex and liver slices. 2. In perfused rat livers, gluconeogenesis was inhibited when lactate, pyruvate or alanine served as substrate, but not with fructose, suggesting pyruvate carboxylase or phosphoenolpyruvate carboxylase as the site of inhibition. No significant effects were evident in O(2) consumption, hepatic glycogen, urea production, or [lactate]/[pyruvate] ratios. 3. A hypoglycaemic effect was evident in vivo in starved and alloxan-diabetic rats, starved guinea pigs and starved mice, but not in 4h-post-absorptive rats. 4. In the starved rat the hypoglycaemia was accompanied by an increase in blood lactate. 5. A trace dose of [(14)C]lactate in vivo was initially oxidized to a lesser extent in inhibitor-treated rats, but during 90min the total CO(2) evolved was slightly greater. The total amount of the tracer oxidized was not significantly different from that in the controls.  相似文献   

14.
In isolated diaphragms from rats fed on a high-fat diet, oxfenicine (S-4-hydroxyphenylglycine) stimulated the depressed rates of pyruvate decarboxylation (2-fold) and glucose oxidation (5-fold). In diaphragms from normal-fed rats, oxfenicine had no effect on pyruvate decarboxylation but doubled the rate of glucose oxidation and inhibited the oxidation of palmitate. Treatment of fat-fed rats with oxfenicine restored the proportion of myocardial pyruvate dehydrogenase in the active form to that observed in normal-fed rats. In rat hearts perfused in the presence of glucose, insulin and palmitate, oxfenicine increased carbohydrate oxidation and stimulated cardiac performance with no increase in oxygen consumption - i.e. improved myocardial efficiency. Working rat hearts perfused with glucose, insulin and palmitate and subjected to 10 min global ischaemia recovered to 81% of their pre-ischaemic cardiac output after 30 min reperfusion, and released large amounts of lactate dehydrogenase into the perfusate. Hearts perfused with oxfenicine had slightly higher pre-ischaemic cardiac outputs and, on reperfusion, recovered more completely (to 96% of the pre-ischaemic value). Oxfenicine reduced the amount of lactate dehydrogenase released by 73%. We conclude that, in rat hearts with high rates of fatty acid oxidation, a relative increase in carbohydrate oxidation will improve myocardial efficiency, and preserve mechanical function and cellular integrity during acute ischaemia.  相似文献   

15.
1. Glucose production from L-lactate was completely inhibited 24h after carbon tetrachloride treatment in liver from 48h-starved rats. The activities of phosphoenolpyruvate carboxykinase, fructose diphosphatase and glucose 6-phosphatase were decreased by this treatment in fed and starved rats, whereas lactate dehydrogenase activity was only decreased in fed animals. 2. The production of glucose by renal cortical slices from fed rats previously treated with carbon tetrachloride was enhanced when L-lactate, pyruvate and glutamine but not fructose were used as glucose precursors. Renal phosphoenolpyruvate carboxykinase activity was increased in this condition. 3. This increase was counteracted by cycloheximide or actinomycin D, suggesting that the effect was due to the synthesis de novo of the enzyme. 4. The pattern of hepatic gluconeogenic metabolites in treated animals was characterized by an increase in lactate, pyruvate, malate and citrate as well as a decrease in glucose 6-phosphate, suggesting an impairment of liver gluconeogenesis in vivo. 5. In contrast, the profile of renal metabolites suggested that gluconeogenesis was operative in the treated rats, as indicated by the marked increase in the content of phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate and glucose 6-phosphate. 6. It is postulated that renal gluconeogenesis could contribute to the maintenance of glycaemia in carbon tetrachloride-treated rats.  相似文献   

16.
1. A method is described for the preparation of isolated cells from guinea pig liver. This involved perfusion in situ, in the non-physiological direction, with collagenase. 2. The cell yield was 20--30%, comparable with those from the livers of other species. 3. The ratio of lactate dehydrogenase to glutamate dehydrogenase in the cells was similar to that in vivo, indicating that there was negligible leakage of cytoplasmic enzymes. 4. The concentrations of K+ and adenine nucleotides were initially lower than in the perfused liver; normal values were obtained on incubation, particularly in the presence of substrate. 5. The L-lactate: pyruvate ratio is 16:1, close to established values. The total beta-hydroxybutyrate: acetoacetate ratio indicates that the mitochondrial redox state is more oxidised than in the perfused liver, but the intracellular ratio is similar to that of the intact liver. 6. Rates of gluconeogenesis and ureogenesis, are within the physiological range. Maximal gluconeogeneis from L-lactate was preceded by a lag period. L-lysine stimulated glucose production from L-lactate but did not abolish the lag phase. 7. The effects of aminooxyacetate and octanoate on L-lactate gluconeogenesis were similar to those in the perfused liver.  相似文献   

17.
Dichloroacetate has effects upon hepatic metabolism which are profoundly different from its effects on heart, skeletal muscle, and adipose tissue metabolism. With hepatocytes prepared from meal-fed rats, dichloroacetate was found to activate pyruvate dehydrogenase, to increase the utilization of lactate and pyruvate without effecting an increase in the net utilization of glucose, to increase the rate of fatty acid synthesis, and to decrease slightly [1-14C]oleate oxidation to 14CO2 without decreasing ketone body formation. With hepatocytes isolated from 48-h-starved rats, dichloroacetate was found to activate pyruvate dehydrogenase, to have no influence on net glucose utilization, to inhibit gluconeogenesis slightly with lactate as substrate, and to stimulate gluconeogenesis significantly with alanine as substrate. The stimulation of fatty acid synthesis by dichloroacetate suggests that the activity of pyruvate dehydrogenase can be rate determining for fatty acid synthesis in isolated liver cells. The minor effects of dichloroacetate on gluconeogenesis suggest that the regulation of pyruvate dehydrogenase is only of marginal importance in the control of gluconeogenesis.  相似文献   

18.
The metabolic effects of sodium dichloroacetate in the starved rat   总被引:11,自引:10,他引:1       下载免费PDF全文
1. Sodium dichloroacetate (300mg/kg body wt. per h) was infused in 24h-starved rats for 4h. 2. Blood glucose decreased significantly, an effect that had previously only been noted in diabetic animals 3. Plasma insulin concentration decreased by 63%; blood lactate and pyruvate concentrations decreased by 50 and 33%, whereas concentrations of 3-hydroxybutyrate and acetoacetate increased by 81 and 73% respectively. 4. Livers were freeze-clamped at the end of the 4h infusion. There were significant decreases in hepatic [glucose], [glucose 6-phosphate], [2-phosphoglycerate], the [lactate]/[pyruvate] ratio, [citrate] and [malate], and also [alanine], [glutamate] and [glutamine], suggesting a diminished supply of gluconeogenic substrates. 5. Animals subjected to a functional hepatectomy at the end of 2h infusions showed no difference in blood-glucose disappearance but a highly significant decrease in the rate of accumulation of lactate, pyruvate, glycerol and alanine, compared with control animals. Dichloroacetate decreased ketone-body clearance. 6. After functional hepatectomy an increase in glutamine accumulation appeared to compensate for the decrease in alanine accumulation. 7. It is concluded that dichloroacetate causes hypoglycaemia by decreasing the net release of gluconeogenic precursors from extrahepatic tissues while inhibiting peripheral ketone-body uptake. 8. These findings are consistent with the activation of pyruvate dehydrogenase (EC 1.2.4.1) in rat muscle by dichloroacetate previously described by Whitehouse & Randle (1973).  相似文献   

19.
1. Isolated kidney tubules from chicken have been used to study the actions of ethanol, ouabain and aminooxyacetate on glucose formation from lactate and pyruvate. 2. In kidney tubules from well-fed chickens the rate of glucose production from lactate was higher than from pyruvate. Ethanol (10 mM) and ouabain (0.1 mM) were found to increase glucose formation from pyruvate but not from lactate. 3. It is concluded that in the presence of ethanol the fluxes of pyruvate through pyruvate dehydrogenase are in favour of the pyruvate carboxylase reaction restricted. 4. Glucose formation from lactate is decreased by aminooxyacetate (0.1 mM) and ouabain (0.1 mM). 5. Aminooxyacetate inhibited glucose formation from lactate, although chicken phosphoenolpyruvate carboxykinase is located intramitochondrially. 6. The results indicate that the effect of aminooxyacetate like that of ouabain is caused by the restricted formation of pyruvate.  相似文献   

20.
Propionate metabolism was studied in ovine hepatocytes. The main products of metabolism were CO2, glucose, L-lactate and pyruvate. The fatty acids, butyrate and palmitate inhibited propionate oxidation; butyrate inhibited but palmitate slightly stimulated gluconeogenesis from propionate. Butyrate and palmitate also inhibited lactate and pyruvate production from both endogenous substrates and from propionate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号