首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intramuscular activation pattern can be connected to the motor unit recruitment strategy of force generation and fatigue resistance. Electromyography has earlier been used in several studies to quantify the spatial inhomogeneity of the muscle activation. We applied ultrasound M-mode strain to study the activation pattern through the tissue deformation. Correlation values of the strain at different force levels were used to quantify the spatial changes in the activation. The assessment was done including the biceps brachii muscle of 8 healthy subjects performing isometric elbow flexion contractions ranging from 0% to 80% of maximum voluntary contraction. The obtained results were repeatable and demonstrated consistent changes of the correlation values during force regulation, in agreement with previously presented EMG-results. Both intra-subject and inter-subject activation patterns of strain were considered along and transverse the fiber direction. The results suggest that ultrasound M-mode strain can be used as a complementary method to study intramuscular activation patterns with high spatial resolution.  相似文献   

2.
In the present study the influence of speed of contraction on the interplay between recruitment and firing rate of motor units (MUs) was assessed. The surface electromyographic (sEMG) signal was recorded in nine healthy subjects from the right biceps brachii using a linear electrode array during ramp isometric contractions (from 0 to 100% of the maximal voluntary force, MVC) at 5, 10, and 20% MVC s(-1) (ramp phase), followed by 10 s of sustained MVC (hold phase). The median frequency (MDF), Root Mean Square (RMS) and conduction velocity (CV) of sEMG, were computed on adjacent epochs covering a force range of 5% MVC each. Full motor unit recruitment (FMUR) point was assessed as the force level at which MDF reached its maximum value; the MDF decay during the hold phase was taken as an index of localized muscle fatigue. At 5% MVC s(-1), FMUR was reached at 52.3% MVC. At 10%MVC s(-1) FMUR was achieved at 58% MVC; while at 20% MVC s(-1) FMUR point was located at 77% MVC, being statistically different from 5 and 10% MVCs(-1) ramps (p<0.05). The MDF decay was steeper at higher speed. CV modifications mirrored those reported for MDF. The RMS increased in a curvilinear fashion and the maximum value was always attained during the hold phase. Our findings suggest that MU recruitment strategies are significantly related to the speed of contraction even in a single muscle.  相似文献   

3.
The purpose of this study was to investigate whether children with cerebral palsy (CP), like typically developing peers, would compensate for muscle fatigue by recruiting additional motor units during a sustained low force contraction until task failure.Twelve children with CP and 17 typically developing peers performed one submaximal isometric elbow flexion contraction until the task could no longer be sustained at on average 25% (range 10–35%) of their maximal voluntary torque. Meanwhile surface electromyography (EMG) was measured from the biceps brachii and triceps brachii, and acceleration variations of the forearm were detected by an accelerometer. Slopes of the change in EMG amplitude and median frequency and accelerometer variation during time normalised to their initial values were calculated.Strength and time to task failure were similar in both groups. Children with CP exhibited a lower increase in EMG amplitude of the biceps brachii and triceps brachii during the course of the sustained elbow flexion task, while there were no significant group differences in median frequency decrease or acceleration variation increase. This indicates that children with CP do not compensate muscle fatigue with recruitment of additional motor units during sustained low force contractions.  相似文献   

4.
Muscular sound and force relationship during isometric contraction in man   总被引:3,自引:0,他引:3  
The contracting muscle generates a low frequency sound detectable at the belly surface, ranging from 11 to 40 Hz. To study the relationship between the muscular sound and the intensity of the contraction a sound myogram (SMG) was recorded by a contact sensor from the biceps brachii of seven young healthy males performing 4-s isometric contractions from 10% to 100% of the maximal voluntary contraction (MVC), in 10% steps. Simultaneously, the electromyogram (EMG) was recorded as an index of muscle activity. SMG and EMG were integrated by conventional methods (iSMG and iEMG). The relationship between iSMG and iEMG vs MVC% is described by parabolic functions up to 80% and 100% MVC respectively. Beyond 80% MVC the iSMG decreases, being about half of its maximal value at 100% MVC. Our results indicate that the motor unit recruitment and firing rate affect the iSMG and iEMG in the same way up to 80% MVC. From 80% to 100% MVC the high motor units' discharge rate and the muscular stiffness together limit the pressure waves generated by the dimensional changes of the active fibres. The muscular sound seems to reflect the intramuscular visco-elastic characteristics and the motor unit activation pattern of a contracting muscle.  相似文献   

5.
Firing rates of motor units and surface EMG were measured from the triceps brachii muscles of able-bodied subjects during brief submaximal and maximal isometric voluntary contractions made at 5 elbow joint angles that covered the entire physiological range of muscle lengths. Muscle activation at the longest, midlength, and shortest muscle lengths, measured by twitch occlusion, averaged 98%, 97%, and 93% respectively, with each subject able to achieve complete activation during some contractions. As expected, the strongest contractions were recorded at 90 degrees of elbow flexion. Mean motor unit firing rates and surface EMG increased with contraction intensity at each muscle length. For any given absolute contraction intensity, motor unit firing rates varied when muscle length was changed. However, mean motor unit firing rates were independent of muscle length when contractions were compared with the intensity of the maximal voluntary contraction (MVC) achieved at each joint angle.  相似文献   

6.
This study was designed to investigate the local effect of experimental muscle pain on the MMG and the surface EMG during a range of sub-maximal isometric contractions. Muscle pain was induced by injections of hypertonic saline into the biceps brachii muscle in 12 subjects. Injections of isotonic saline served as a control. Pain intensity and location, MMG and surface EMG from the biceps brachii were assessed during static isometric (0%, 10%, 30%, 50% and, 70% of the maximal voluntary contraction) and ramp isometric (0-50% of the maximal voluntary contraction) elbow flexions. MMG and surface EMG signals were analyzed in the time and frequency domain. Experimentally induced muscle pain induced an increase in root mean square values of the MMG signal while no changes were observed in the surface EMG. Most likely this increase reflects changes in the mechanical contractile properties of the muscle and indicates compensatory mechanisms, i.e. decreased firing rate and increased twitch force to maintain a constant force output in presence of experimental muscle pain. Under well-controlled conditions, MMG recordings may be more sensitive than surface EMG recordings and clinically useful for detecting non-invasively increased muscle mechanical contributions during muscle pain conditions.  相似文献   

7.
This study examined, in nine old men (82 +/- 4 yr), whether there is an association between the magnitude of change in motor unit discharge rate and the amount of twitch potentiation after a conditioning contraction (CC). The evoked twitch force and motor unit discharge rate during isometric ramp-and-hold contractions (10-18 s) of the triceps brachii muscle at 10, 20, and 30% of the maximal voluntary contraction were determined before and 10 s, 2 min, 6 min, and 11 min after a 5-s CC at 75% maximal voluntary contraction. After the CC, there was a potentiation of twitch force (approximately twofold), and the discharge rate of the 47 sampled motor units declined (P < 0.05) an average of 1 Hz 10 s after the CC, compared with the control condition. The CC had no effect on the variability (coefficient of variation) of both force and discharge rate, as well as the electromyographic activity recorded over the triceps brachii and biceps brachii muscles. In contrast to our earlier study of young men (Klein CS, Ivanova TD, Rice CL, and Garland SJ, Neurosci Lett 316: 153-156, 2001), the magnitude of the reduction in discharge rate after the CC was not associated (r = 0.06) with the amount of twitch potentiation. These findings suggest an age-related alteration in the neural strategy for adjusting motor output to a muscle after a CC.  相似文献   

8.
Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role. Accepted: 5 May 1998  相似文献   

9.
The relative roles of motor unit firing rate modulation and recruitment were evaluated when individuals with cervical spinal cord injury (SCI) and able-bodied controls performed a brief (6 s), 50% maximal voluntary contraction (50% MVC; target contraction) of triceps brachii every 10 s until it required maximal effort to achieve the target force. Mean (+/-SD) endurance times for SCI and control subjects were 34+/-26 and 15+/-5 min, respectively, at which point significant reductions in maximal triceps force had occurred. Twitch occlusion analysis in controls indicated that force declines resulted largely from peripheral contractile failure. In SCI subjects, triceps surface EMG and motor unit potential amplitude declined in parallel suggesting failure at axon branch points and/or alterations in muscle membrane properties. The force of low threshold units, measured by spike-triggered averaging, declined in SCI but not control subjects, suggesting that higher threshold units fatigued in controls. Central fatigue was also obvious after SCI. Mean (+/-SD) MVC motor unit firing rates declined significantly with fatigue for control (24.6+/-7.1 to 17.3+/-5.1Hz), but not SCI subjects (25.9+/-12.7 to 20.1+/-9.7Hz). Unit firing rates were unchanged during target contractions for each subject group, but with the MVC rate decreases, units of SCI and control subjects were activated intensely at endurance time (88% and 99% MVC rates, respectively). New unit recruitment also maintained the target contractions although it was limited after SCI because many descending inputs to triceps motoneurons were disrupted. This resulted in sparse EMG, even during MVCs, but allowed the same unit to be recorded throughout. These EMG data showed that both unit recruitment and rate modulation were important for maintaining force during repeated submaximal intermittent contractions of triceps brachii muscles performed by SCI subjects. Similar results were found for control subjects. Muscles weakened by SCI may therefore provide a useful model in which to directly study motor unit rate modulation and recruitment during weak or strong voluntary contractions.  相似文献   

10.
Objectives: Muscle stiffness increases during muscle contraction. The purpose of this study was to determine the strength of the correlation between myotonometric measurements of muscle stiffness and surface electromyography (sEMG) measurements during various levels of voluntary isometric contractions of the biceps brachii muscle. Subjects: Eight subjects (four female; four male), with mean age of 30.6±8.23 years, volunteered to participate in this study. Methods: Myotonometer and sEMG measurements were taken simultaneously from the right biceps brachii muscle. Data were obtained: (1) at rest, (2) while the subject held a 15 lb (6.8 kg) weight isometrically and, (3) during a maximal voluntary isometric contraction. Myotonometer force–displacement curves (amount of tissue displacement to a given unit of force applied perpendicular to the muscle) were compared with sEMG measurements using Pearson’s product–moment correlation coefficients. Results: Myotonometer and sEMG measurement correlations ranged from −0.70 to −0.90. The strongest correlations to sEMG were from Myotonometer force measurements between 1.00 and 2.00 kg. Conclusions: Myotonometer and sEMG measurements were highly correlated. Tissue stiffness, as measured by the Myotonometer, appears capable of assessing changes in muscle activation levels.  相似文献   

11.
Blood pressure and heart rate changes during sustained isometric exercise were studied in 11 healthy male volunteers. The responses were measured during voluntary and involuntary contractions of the biceps brachii at 30% of maximal voluntary contraction (MVC), and the triceps surae at 30% and 50% MVC. Involuntary contractions were evoked by percutaneous electrical stimulation of the muscle. Measurements of the time to peak tension of maximal twitch showed the biceps brachii (67.0 +/- 7.9 ms) muscle to be rapidly contracting, and the triceps surae (118.0 +/- 10.5 ms) to be slow contracting. The systolic and diastolic blood pressures increased linearly throughout the contractions, and systolic blood pressure increased more rapidly than diastolic. There was no significant difference in response to stimulated or voluntary contractions, nor was there any significant difference between the responses to contractions of the calf or arm muscles at the same relative tension. In contrast the heart rate rose to a higher level (P less than 0.01) in the biceps brachii than the triceps surae at given % MVC, and during voluntary compared with the electrically evoked contractions in the two muscle groups. It was concluded that the arterial blood pressure response to isometric contractions, unlike heart rate, is primarily due to a reflex arising within the active muscles (cf. Hultman and Sj?holm 1982) which is associated with relative tension but independent of contraction time and muscle mass.  相似文献   

12.
The aim of the study was to investigate the recovery of the maximum voluntary contraction force (MVC), the endurance time and electromyographical (EMG) parameters following exhaustive dynamic exercise of the m. biceps brachii. EMG recordings were made in ten healthy subjects using bipolar surface electrodes placed over the common belly of the left arm biceps muscle. Up to 25 h post-exercise, the maximum contraction force and the EMG signal were recorded alternately at regular intervals. The EMG signal was recorded during 30-s contractions at 40% of the pre-fatigued MVC. Four hours and 25 h post-exercise, the endurance time of a 40% pre-fatigued MVC was recorded. Up to 25 h after the exercise the maximum contraction force, the endurance time and the EMG parameters were significantly different from the pre-exercise values. Nine out of ten subjects complained that muscle soreness had developed. Thus, long-lasting changes are found after exhaustive dynamic exercise, not only in the MVC and the muscle's endurance capacity, but also in the EMG signal.  相似文献   

13.
M-wave modulation at relative levels of maximal voluntary contraction   总被引:1,自引:0,他引:1  
Frequency (mean and median power frequency, f and f m) and amplitude (average rectified and root mean square values, ARV and rms), parameters of the M-wave, and the dorsiflexor force parameters of the anterior tibial muscles were measured in seven healthy human subjects. Intermittent, voluntary contractions at relative intensities (40%, 60%, and 80%) of maximal voluntary contraction (MVC) were performed in conjunction with electrical stimulation. The M-wave parameter changes were measured over the course of the isometric contractions. At higher force levels, M-wave potentiation was observed as increases in both ARV and rms. The ARV augmentation attained levels as high as 206.1 (SD 7.4)% of resting values after both initial and final contractions of 80% MVC, reaching statistical significance (P < 0.01). The f and f m failed to show a significant difference at any level of contraction. It was surmised that potentiation of the M-wave was the result of an increased contribution of muscle fibre type IIb recruited during higher contraction levels, reflecting the change to larger, deeper innervating motoneurons as the intensity of contraction, as a percentage of MVC, rose. Recruitment of type IIb fibres, which have been reported to have a higher energy potential and frequency content, were thought to reflect changes in the local, excitability threshold of some motor units as the force intensity increased during the intermittent voluntary contractions. It is suggested that the M-wave elicited after contractions has the potential to reflect, to some extent, motor unit recruitment changes resulting from the preceding contractions, and that through comparisons of M-wave amplitude parameters, contributions of varying fibre types over the course of a contraction may be indicated.  相似文献   

14.
The aim of this study was to quantify the effects of spatial reorganisation of muscle activity on task-related and tangential components of force variability during sustained contractions. Three-dimensional forces were measured from isometric elbow flexion during submaximal contractions (50 s, 5–50% of maximal voluntary contraction (MVC)) and total excursion of the centre of pressure was extracted. Spatial electromyographic (EMG) activity was recorded from the biceps brachii muscle. The centroids of the root mean square (RMS) EMG and normalised mutual information (NMI) maps were computed to assess spatial muscle activity and spatial relationship between EMG and task-related force variability, respectively. Result showed that difference between the position of the centroids at the beginning and at the end of the contraction of the RMS EMG and the NMI maps were different in the medial–lateral direction (P < 0.05), reflecting that muscle regions modulate their activity without necessarily modulating the contribution to the task-related force variability over time. Moreover, this difference between shifts of the centroids was positively correlated with the total excursion of the centre of pressure at the higher levels of contractions (>30% MVC, R2 > 0.30, P < 0.05), suggesting that changes in spatial muscle activity could impact on the modulation of tangential forces. Therefore, within-muscle adaptations do not necessarily increase force variability, and this interaction can be quantified by analysing the RMS EMG and the NMI map centroids.  相似文献   

15.
The focus of the present study is the long term element of muscle fatigue provoked by prolonged intermittent contractions at submaximal force levels and analysed by force, surface electromyography (EMG) and mechanomyogram (MMG). It was hypothesized that fatigue related changes in mechanical performance of the biceps muscle are more strongly reflected in low than in high force test contractions, more prominent in the MMG than in the EMG signal and less pronounced following contractions controlled by visual compared to proprioceptive feedback. Further, it was investigated if fatigue induced by 30 min intermittent contractions at 30% as well as 10% of maximal voluntary contraction (MVC) lasted more than 30 min recovery. In six male subjects the EMG and MMG were recorded from the biceps brachii muscle during three sessions with fatiguing exercise at 10% with visual feedback and at 30% MVC with visual and proprioceptive feedback. EMG, MMG, and force were evaluated during isometric test contractions at 5% and 80% MVC before prolonged contraction and after 10 and 30 min of recovery. MVC decreased significantly after the fatiguing exercise in all three sessions and was still decreased even after 30 min of recovery. In the time domain significant increases after the fatiguing exercise were found only in the 5% MVC tests and most pronounced for the MMG. No consistent changes were found for neither EMG nor MMG in the frequency domain and feedback mode did not modify the results. It is concluded that long term fatigue after intermittent contractions at low force levels can be detected even after 30 min of recovery in a low force test contraction. Since the response was most pronounced in the MMG this may be a valuable variable for detection of impairments in the excitation-contraction coupling.  相似文献   

16.
The objective of this work was to assess the repeatability of two surface electromyographic (sEMG) recording techniques, the classical bipolar configuration and a Laplacian configuration to document their ability to provide reliable information during follow-up studies. The signals were recorded on 10 healthy subjects during voluntary isometric contractions of the biceps brachii muscle at different constant contraction levels. Slopes, area ratios (at 60% of the maximal voluntary contraction (MVC)) and initial values (at 20%, 40%, 60%, 80% and 100% MVC) of the root mean square (RMS), the mean power frequency (MPF) and the muscle fibre conduction velocity (CV) were estimated. Experimental sessions were repeated on three different days with both electrode sets to evaluate the repeatability of sEMG parameter estimates. Classical results were observed, such as an increase in the RMS and the CV with the contraction level. Only initial values of RMS and MPF were shown to be dependent on electrode type. These two parameters presented intra-class correlation coefficient values higher than .80 for high contraction levels. On the whole, the repeatability of the measures was good; however it was better for all sEMG parameter estimates with bipolar electrodes than Laplacian electrodes. Because a bipolar configuration is less selective than a Laplacian one, it provides a global view of muscular activity, which is more repeatable, hence more suitable for follow-up studies.  相似文献   

17.
Daily activities involve dynamic muscle contractions that yield nonstationary myoelectric signals (MESs). The purpose of this work was to determine the individual effects of four time-varying factors (the number and firing rate of active motor units, muscle force and joint angle) on the mean frequency of a MES. Previous theoretical and experimental work revealed that although changes in the number and firing rate of active motor units contribute to the nonstationarities of the signal, they do not significantly affect the mean frequency. In the experimental work, 12 subjects performed 25 static contractions, one for each force (20, 30, 40, 50 and 60% of maximum voluntary contraction) and elbow joint angle (50, 70, 90, 110 and 130 degrees extension) combination. A MES was recorded from the surface of the biceps brachii during each contraction. The results indicated that muscle force only weakly affects the mean frequency. Also shown was that alteration in muscle geometry resulting from changes in elbow joint angle does significantly affect the mean frequency. Knowing this is important for the assessment of muscle fatigue during dynamic contractions.  相似文献   

18.
Parkinson’s disease (PD) related decreases in muscle strength may result from both central and peripheral factors. However, the effect of PD on the neuromuscular system, such as motor unit activation properties, remains unclear. The purpose of the present study was to compare the spatial distribution pattern of electromyographic activity during sustained contractions in healthy subjects and PD patients. Twenty-five female PD patients and 25 healthy age-matched female control subjects performed ramp submaximal contractions during an isometric knee extension from 20% to 80% of the maximal voluntary contraction (MVC). To evaluate alterations in the spatial electromyography (EMG) potential distribution, normalized root mean square (RMS), modified entropy, coefficient of variation, and correlation coefficients were calculated from multi-channel surface electromyography at 10% force increments. The comparison between PD and healthy subjects revealed that, during increased force exertions, PD patients exhibited less change in normalized RMS, modified entropy, coefficient of variation, and pattern of spatial EMG distribution. These data showed that the heterogeneity and the changes in the activation pattern are smaller in the PD patients than in healthy subjects. This finding may be associated with central adaptation and/or peripheral changes in PD patients.  相似文献   

19.
The purpose of the present study was to determine whether the motor unit (MU) recruitment strategy of the agonist and antagonist muscles in the dominant arm differs from that in the non-dominant arm. The median frequency (MF) of the power density spectrum (PDS) of the electromyogram (EMG) was used as a tracking parameter to describe the MU recruitment. In 8 subjects the EMG was recorded from the biceps brachii and triceps brachii of each limb during isometric elbow flexion performed in a ramp fashion. Force was increased from 0 to 100% of the maximum voluntary contraction (MVC) in 3 s following a track displayed on an oscilloscope. When comparing the dominant versus non-dominant arm we found no statistical difference in the MU recruitment pattern of the biceps brachii and the triceps. Because the dominant arm was not always the better performing arm, we grouped the data according to the ability of the subjects to track the ramp signal. In this case we found a statistically significant difference between the better and worse performing arm in the full MU recruitment of the biceps. A more precise and accurate control of the increase in force was obtained when the central nervous system selected a slower and prolonged recruitment of MUs in the agonist muscle.  相似文献   

20.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号