首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary In Escherichia coli, induction of the SOS functions by UV irradiation or by mutation in the recA gene promotes an SOS mutator activity which generates mutations in undamaged DNA. Activation of RecA protein by the recA730 mutation increases the level of spontaneous mutation in the bacterial DNA. The number of recA730-induced mutations is greatly increased in mismatch repair deficient strains in which replication errors are not corrected. This suggests that the majority of recA730-induced mutations (90%) arise through correctable, i.e. non-targeted, replication errors. This recA730 mutator effect is suppressed by a mutation in the umuC gene. We also found that dam recA730 double mutants are unstable, segregating clones that have lost the dam or the recA mutations or that have acquired a new mutation, probably in one of the genes involved in mismatch repair. We suggest that the genetic instability of the dam recA730 mutants is provoked by the high level of replication errors induced by the recA730 mutation, generating killing by coincident mismatch repair on the two unmethylated DNA strands. The recA730 mutation increases spontaneous mutagenesis of phage poorly. UV irradiation of recA730 host bacteria increases phage untargeted mutagenesis to the level observed in UV-irradiated recA + strains. This UV-induced mutator effect in recA730 mutants is not suppressed by a umuC mutation. Therefore UV and the recA730 mutation seem to induce different SOS mutator activities, both generating untargeted mutations.  相似文献   

2.
Summary We introduced the dnaE486 and polC74 mutations (which are associated with decreased DNA polymerase III replication fidelity) into excision defective Escherichia coli strains with varying SOS responses. These mutations increased the UV-induced frequency of base pair substitution mutations in all strains tested, except recA430 and umuC122 derivatives. This UV mutator effect therefore requires expression of the SOS error-prone repair system. In recA441 lexA51 strains where the SOS system is constitutively expressed, the UV mutator effect of the dnaE alleles was similar in relative terms (though greater in absolute terms). Since these dnaE alleles decrease rather than increase survival after UV it is argued that they promote a burst of untargeted mutations close to UV photoproducts (hitch-hiking mutations) rather than increase the number of translesion synthesis events. The fact that there was no UV mutagenesis in dnaE486 umuC122 or polC74 umuC122 strains indicates that infidelity associated with these dnaE alleles did not of itself enable translesion synthesis to occur. The spontaneous mutator effect conferred by dnaE486 and polC74 was not affected by umuC122 or recA430 indicating that it is not dependent upon error-prone repair ability. In recA441 lexA51 bacteria, where SOS error-prone repair is constitutively induced, the mutator effect of dnaE486 was greater and was largely blocked by umuC122. It is suggested that spontaneously occurring cryptic lesions that are themselves unable to induce the SOS system are subject to translesion synthesis under these conditions and trigger a burst of hitch-hiking mutations that are therefore effectively umuC dependent.  相似文献   

3.
Summary We have studied spontaneous and UV mutagenesis of the glyU gene in Escherichia coli trpA461 (GAG) strains carrying the pIP11 plasmid, in which the dnaQ gene encoding the 3–5 exonuclease subunit (epsilon) of DNA polymerase III is fused to the tac(trp-lac) promoter. We have used a pair of M13glyU phage in which the gene encoding the glycyl-tRNA is cloned in opposite orientations, consequently the phage present either GGG or CCC anticodon triplets for mutagenesis. The presence of IPTG, the inducer of the tac-dnaQ fusion, results in about 100-fold decrease in frequency of spontaneous Su+ (GAG) mutations arising in the CCC phage. The enhanced expression of tac-dnaQ reduces 10-fold the frequency of UV-induced Su+ (GAG) mutations in the CCC phage and nearly completely prevents generation by UV of Su+ (GAG) mutations in the GGG phage, in which UV-induced pyrimidine photoproducts can be formed only in the vicinity of the target triplet. These results suggest that both locally and regionally targeted mutagenesis is affected by overproduction of the epsilon subunit. By delayed photoreversal mutagenesis we have shown that UV-induced chromosomal mutagenesis of the umuC36 trpA461 strain harboring pIP11 is completely abolished in the presence of IPTG. This result seems to indicate that the misinocorporation step of DNA translesion synthesis is affected by excess of the epsilon subunit. Finally, we have introduced the pIP13 plasmid carrying the dnaQ gene into the recA1207 strain, which is deficient in the recombinase activity of RecA but constitutive in the protease activity. We demonstrate that the transformant shows much higher UV sensitivity than recA1207 carrying the vector plasmid pBR325, indicating that translesion synthesis significantly contributes to DNA repair capacity of cells deficient in recombination.  相似文献   

4.
Summary The dnaQ (mutD) gene product which encodes the -subunit of the DNA polymerase III holoenzyme has a central role in controlling the fidelity of DNA replication because both mutD5 and dnaQ49 mutations severely decrease the 3–5 exonucleolytic editing capacity.It is shown in this paper that more than 95% of all anaQ49-induced base pair substitutions are transversions of the types G:C-T:A and A:T-T:A. Not only is this unusual mutational specificity precisely that observed recently for a number of potent carcinogens such as benzo(a) pyrene diolepoxide (BPDE) and aflatoxin B1 (AFB1), which are dependent on the SOS system to mutagenize bacteria, but it is also seen for the constitutively expressed SOS mutator activity in E. coli tif-1 strains as well as for the SOS mutator activity mediated gap filling of apurinic sites. Because the G:C-T:A and A:T-T:A transversions can either result from the insertion of an adenine across from apurinic sites or arise due to the incorporation of syn-adenine opposite a purine base, we postulate that the DNA polymerase III holoenzyme also has a reduced discrimination ability in a dnaQ49 background.The introduction of a lexA (Ind-) allele, which prevents the expression of SOS functions, led to a significant reduction in the dnaQ49-caused mutator effect.Both, the mutational specificity observed and the partial lexA + dependence of the mutator effect provoke a reanalysis of the hypothesis that the DNA polymerase III holoenzyme can be converted into the postulated but until now unidentified SOS polymerase.  相似文献   

5.
An Escherichia coli strain bearing the dnaQ49 mutation, which results in a defective s subunit of DNA polymerase III, and carrying the lexA71 mutation, which causes derepression of the SOS regulon, is totally unable to maintain high-copy-number plasmids containing the umuDC operon. The strain is also unable to maintain the pAN4 plasmid containing a partial deletion of the umuD gene but retaining the wild-type umuC gene. These results suggest that a high cellular level of UmuC is exceptionally harmful to the defective DNA polymerase III of the dnaQ49 mutant. We have used this finding as a basis for selection of new plasmid umuC mutants. The properties of two such mutants, bearing the umuC61 or umuC95 mutation, are described in detail. In the umuC122:: Tn 5 strain harbouring the mutant plasmids, UV-induced mutagenesis is severely decreased compared to that observed with the parental umuDC + plasmid. Interestingly, while the frequency of UV-induced GC AT transitions is greatly reduced, the frequency of AT TA transversions is not affected. Both mutant plasmids bear frameshift mutations within the same run of seven A residues present in umuC +; in umuC61 the run is shortened to six A whereas in umuC95 is lengthened to eight A. We have found in both umuC61 and umuC95 that translation is partially restored to the proper reading frame. We propose that under conditions of limiting amounts of UmuC, the protein preferentially facilitates processing of only some kinds of UV-induced lesions.  相似文献   

6.
The dinB gene of Escherichia coli is known to be involved in the untargeted mutagenesis of lambda phage. Recently, we have demonstrated that this damage-inducible and SOS-controlled gene encodes a novel DNA polymerase, DNA Pol IV, which is able to dramatically increase the untargeted mutagenesis of F' plasmid. At the amino acid level, DNA Pol IV shares sequence homologies with E. coli UmuC (DNA Pol V), Rev1p, and Rad30p (DNA polymerase eta) of Saccharomyces cerevisiae and human Rad30A (XPV) proteins, all of which are involved in translesion DNA synthesis. To better characterize the Pol IV-dependent untargeted mutagenesis, i.e., the DNA Pol IV mutator activity, we analyzed the genetic requirements of this activity and determined the forward mutation spectrum generated by this protein within the cII gene of lambda phage. The results indicated that the DNA Pol IV mutator activity is independent of polA, polB, recA, umuDC, uvrA, and mutS functions. The analysis of more than 300 independent mutations obtained in the wild-type or mutS background revealed that the mutator activity clearly promotes single-nucleotide substitutions as well as one-base deletions in the ratio of about 1:2. The base changes were strikingly biased for substitutions toward G:C base pairs, and about 70% of them occurred in 5'-GX-3' sequences, where X represents the base (T, A, or C) that is mutated to G. These results are discussed with respect to the recently described biochemical characteristics of DNA Pol IV.  相似文献   

7.
Summary The induction of prophage by ultraviolet light has been measured inE. coli K12 lysogenic cells deficient in DNA polymerase I. The efficiency of the induction process was greater inpolA1 polC(dnaE) double mutants incubated at the temperature that blocks DNA replication than inpolA + polC single mutants. Similarly, thepolA1 mutation sensitizedtif-promoted lysogenic induction in apolA1 tif strain at 42°. In strains bearing thepolA12 mutation, which growth normally at 30°, induction of the prophage occured after the shift to 42°. It is concluded that dissapearance of the DNA polymerase I activity leads to changes in DNA replication that are able, per se, to trigger the prophage induction process.  相似文献   

8.
Bacteria live in unstructured and structured environments, experiencing feast and famine lifestyles. Bacterial colonies can be viewed as model structured environments. SOS induction and mutagenesis have been observed in aging Escherichia coli colonies, in the absence of exogenous sources of DNA damage. This cAMP-dependent mutagenesis occurring in Resting Organisms in a Structured Environment (ROSE) is unaffected by a umuC mutation and therefore differs from both targeted UV mutagenesis and recA730 (SOS constitutive) untargeted mutagenesis. As a recB mutation has only a minor effect on ROSE mutagenesis it also differs from both adaptive reversion of the lacI33 allele and from iSDR (inducible Stable DNA Replication) mutagenesis. Besides its recA and lexA dependence, ROSE mutagenesis is also uvrB and polA dependent. These genetic requirements are reminiscent of the untargeted mutagenesis in λ phage observed when unirradiated λ infects UV-irradiated E. coli. These mutations, which are not observed in aging liquid cultures, accumulate linearly with the age of the colonies. ROSE mutagenesis might offer a good model for bacterial mutagenesis in structured environments such as biofilms and for mutagenesis of quiescent eukaryotic cells. Received: 30 April 1997 / Accepted: 1 July 1997  相似文献   

9.
Summary Mutagenic repair in Escherichia coli after ultraviolet (UV) irradiation has previously been shown to require a function of DNA polymerase III. In contrast, no effect of incubating a polC temperature-sensitive strain at 42° has been found after gamma irradiation. Thus at present there is no direct evidence for the involvement of polymerase III in gamma ray mutagenesis. This could, however, merely reflect the stability of the premutational lesion during the period of polymerase III insufficiency such that mutagenic repair is resumed on the plate during subsequent incubation at permissive temperature.It was previously suggested that an inducible factor might interact with polymerase III to enable it to polymerise in an error-prone way in daughter strand gaps opposite non-coding lesions in the template strand. A temperature-resistant revertant (CM 792) of a temperature-sensitive polC strain (CM 731) has been isolated which has properties expected of a strain in which the polymerase III complex is no longer susceptible to the inducible co-factor. Its UV sensitivity, spontaneous mutation rate and mutagenic response to ethyl methanesulphonate are all normal or near normal, also the rates of mutation to prototrophy after gamma irradiation and to streptomycin resistance after UV. These latter mutations are believed to arise through constitutive mutagenic repair at sites in pre-existing DNA. In contrast, the rate of UV-induced mutation to prototrophy due to changes at ochre suppressor loci is greatly depressed and no Weigle-reactivation of bacteriophage T3 is observable; both these effects are believed to result from the action of inducible mutagenic repair in newly-replicated DNA. It is suggested that the 3 to 5 exnnuclease activity of the polymerase III complex in CM 792 may not be susceptible to inhibition by an inducible factor and so continues to remove mismatched bases inserted in newly-replicated DNA opposite damage template sites thus preventing the fixation of errors as mutations.  相似文献   

10.
Summary The role of the proofreading (35 exonuclease) function of T4 DNA polymerase and the mismatch repair system ofE. coli on N4-hydroxycytidine (oh4Cyd)1 induced mutagenesis was investigated. oh4Cyd-induced mutation is strongly suppressed when the proofreading activity increases as a result of the presence oftsCB87-antimutator polymerase or elevated temperature (43° C vs 30° C). Mutagenic activity of oh4Cyd, however, is little, if at all, affected by the presence of thetsLB56 mutator allele of T4 DNA polymerase with suppressed proofreading activity. This leads to the conclusion that oh4C nucleotides are not frequently removed by proofreading activity of wild-type T4 DNA polymerase. The number of mutations induced by oh4Cyd increases 3- to 5-fold due to damage of the genesmutS,mutL,uvrE, but notmutR.Dam - cells are more sensitive to, and hypermutable by, oh4Cyd in comparison withdam + cells. This is compatible with the notion that oh4C residues are recognised and excised by mismatch repair enzymes. The results indicate thath neither the proofreading function of T4 DNA polymerase, nor the mismatch repair enzymes, are responsible for the high specificity of oh4Cyd which causes ATGC transition.  相似文献   

11.
Summary polC, the gene specifying the structure of the replication-specific DNA polymerase III of B. subtilis, was mapped by exploiting azp-12, a mutation conferring resistance to azopyrimidine which determines a mutant, azopyrimidine-resistant enzyme. azp-12 was located in the area of the pyrA locus and is between spcB1 and recA1. azp-12 was linked by transformation to four other mutations which influence the in vitro behaviour of DNA polymerase III-polC25, polC26, mut-1(ts), and DNAF133; the close linkage of these five mutations strongly suggests that they are alleles of the same gene.  相似文献   

12.
Summary Two temperature-sensitive mutants in dnaE, the structural gene for DNA polymerase III of Escherichia coli, show increased spontaneous mutation rates at permissive temperatures. Studies of the reversion of well-characterized trpA mutations in dnaE strains show that the mutagenic effect of altered DNA polymerase III applies to several different base substitution events, but not to frameshifts. The results suggest that DNA polymerase III is involved in base-selection during DNA replication.MRC Molecular Genetics Unit  相似文献   

13.
Summary A newly-isolated Escherichia coli mutant suffers only about 10% as many mutations as normal strains on exposure to nitrosoguanidine1. The responsible mutation, inm-1, maps at approximately minute 79 in the current E. coli genetic map. The mutant is normal for overall growth, nitrosoguanidine lethality, spontaneous mutagenesis, ultraviolet light lethality and mutagenesis, ethyl methanesulfonate lethality and mutagenesis, and the adaptive repair induced by alkylating agents. The existence of this mutation proves that nitrosoguanidine mutagenesis is not merely the result of reactions between the chemical and DNA, but requires specific cellular function(s), and underscores the peculiarity of nitrosoguanidine as a mutagen.  相似文献   

14.
Bacteria live in unstructured and structured environments, experiencing feast and famine lifestyles. Bacterial colonies can be viewed as model structured environments. SOS induction and mutagenesis have been observed in aging Escherichia coli colonies, in the absence of exogenous sources of DNA damage. This cAMP-dependent mutagenesis occurring in Resting Organisms in a Structured Environment (ROSE) is unaffected by a umuC mutation and therefore differs from both targeted UV mutagenesis and recA730 (SOS constitutive) untargeted mutagenesis. As a recB mutation has only a minor effect on ROSE mutagenesis it also differs from both adaptive reversion of the lacI33 allele and from iSDR (inducible Stable DNA Replication) mutagenesis. Besides its recA and lexA dependence, ROSE mutagenesis is also uvrB and polA dependent. These genetic requirements are reminiscent of the untargeted mutagenesis in λ phage observed when unirradiated λ infects UV-irradiated E. coli. These mutations, which are not observed in aging liquid cultures, accumulate linearly with the age of the colonies. ROSE mutagenesis might offer a good model for bacterial mutagenesis in structured environments such as biofilms and for mutagenesis of quiescent eukaryotic cells.  相似文献   

15.
Summary In an E. coli K-12 strain producing a thermolabile, mutagenic DNA polymerase III, enhanced reversion rates were observed for a trp missense mutation of Ftrp and ColVBtrp. In addition, replication of these plasmid DNA molecules was greatly reduced at the nonpermissive temperature. Both observations indicate that DNA polymerase III is involved in the replication of these plasmids.  相似文献   

16.
Methods that can randomly introduce mutations in the microbial genome have been used for classical genetic screening and, more recently, the evolutionary engineering of microbial cells. However, most methods rely on either cell-damaging agents or disruptive mutations of genes that are involved in accurate DNA replication, of which the latter requires prior knowledge of gene functions, and thus, is not easily transferable to other species. In this study, we developed a new mutator for in vivo mutagenesis that can directly modify the genomic DNA. Mutator protein, MutaEco, in which a DNA-modifying enzyme is fused to the α-subunit of Escherichia coli RNA polymerase, increases the mutation rate without compromising the cell viability and accelerates the adaptive evolution of E. coli for stress tolerance and utilization of unconventional carbon sources. This fusion strategy is expected to accommodate diverse DNA-modifying enzymes and may be easily adapted to various bacterial species.  相似文献   

17.
Further studies on theisfA mutation responsible for anti-SOS and antimutagenic activities inEscherichia coli are described. We have previously shown that theisfA mutation inhibits mutagenesis and other SOS-dependent phenomena, possibly by interfering with RecA coprotease activity. TheisfA mutation has now been demonstrated also to suppress mutator activity inE. coli recA730 andrecA730 lexA51(Def) strains that constitutively express RecA coprotease activity. We further show that the antimutator activity of theisfA mutation is related to inhibition of RecA coprotease-dependent processing of UmuD. Expression of UmuD' from plasmid pGW2122 efficiently restores UV-induced mutagenesis in therecA730 isfA strain and partially restores its mutator activity. On the other hand, overproduction of UmuD'C proteins from pGW2123 plasmid markedly enhances UV sensitivity with no restoration of mutability.  相似文献   

18.
19.
Summary Using a nonselective method, we have estimated the proportion of untargeted mutations in the lacI gene of E. coli by transferring either irradiated or unirradiated F pro lac plasmids from an excision deficient donor to an excision deficient pro lac deleted recipient that had been irradiated and allowed to induce recA dependent functions for 30 min. We find that about 10 percent of the mutations induced by either 3.5 Jm-2 or 7 Jm-2 UV are untargeted.  相似文献   

20.
Mechanism of SOS-induced targeted and untargeted mutagenesis in E. coli   总被引:1,自引:0,他引:1  
G Maenhaut-Michel 《Biochimie》1985,67(3-4):365-369
This paper retraces the evolution of hypotheses concerning mechanisms of SOS induced mutagenesis. Moreover, it reports some recent data which support a new model for the mechanism of targeted and untargeted mutagenesis in E. coli. In summary, the SOS mutator effect, which is responsible for untargeted mutagenesis and perhaps for the misincorporation step in targeted mutagenesis, is believed to involve a fidelity function associated with DNA polymerase III and does not require the umuC gene product. umuC and umuD gene products are probably required specifically for elongation of DNA synthesis past blocking lesions, i.e. to allow mutagenic replication of damaged DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号