首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
《The Journal of cell biology》1990,111(5):1849-1858
Spectrins are a major component of the membrane skeleton in many cell types where they are thought to contribute to cell form and membrane organization. Diversity among spectrin isoforms, especially their beta subunits, is associated with diversity in cell shape and membrane architecture. Here we describe a spectrin isoform from Drosophila that consists of a conventional alpha spectrin subunit complexed with a novel high molecular weight beta subunit (430 kD) that we term beta H. The native alpha beta H molecule binds actin filaments with high affinity and has a typical spectrin morphology except that it is longer than most other spectrin isoforms and includes two knoblike structures that are attributed to a unique domain of the beta H subunit. Beta H is encoded by a different gene than the previously described Drosophila beta-spectrin subunit but shows sequence similarity to beta-spectrin as well as vertebrate dystrophin, a component of the membrane skeleton in muscle. By size and sequence similarity, dystrophin is more similar to this newly described beta-spectrin isoform (beta H) than to other members of the spectrin gene family such as alpha-spectrin and alpha- actinin.  相似文献   

2.
Basement membranes are thin sheets of specialized extracellular matrix molecules that are important for supplying mechanical support and for providing an interactive surface for cell morphology. Prior to secretion and assembly, basement membrane molecules undergo intracellular processing, which is essential for their function. We have identified several mutations in a procollagen processing enzyme, lysyl hydroxylase (let-268). The Caenorhabditis elegans lysyl hydroxylase is highly similar to the vertebrate lysyl hydroxylase, containing all essential motifs required for enzymatic activity, and is the only lysyl hydroxylase found in the C. elegans sequenced genome. In the absence of C. elegans lysyl hydroxylase, type IV collagen is expressed; however, it is retained within the type IV collagen-producing cells. This observation indicates that in let-268 mutants the processing and secretion of type IV collagen is disrupted. Our examination of the body wall muscle in these mutant animals reveals normal myofilament assembly prior to contraction. However, once body wall muscle contraction commences the muscle cells separate from the underlying epidermal layer (the hypodermis) and the myofilaments become disorganized. These observations indicate that type IV collagen is required in the basement membrane for mechanical support and not for organogenesis of the body wall muscle.  相似文献   

3.
The Caenorhabditis elegans genome encodes one alpha spectrin subunit, a beta spectrin subunit (beta-G), and a beta-H spectrin subunit. Our experiments show that the phenotype resulting from the loss of the C. elegans alpha spectrin is reproduced by tandem depletion of both beta-G and beta-H spectrins. We propose that alpha spectrin combines with the beta-G and beta-H subunits to form alpha/beta-G and alpha/beta-H heteromers that perform the entire repertoire of spectrin function in the nematode. The expression patterns of nematode beta-G spectrin and vertebrate beta spectrins exhibit three striking parallels including: (1) beta spectrins are associated with the sites of cell-cell contact in epithelial tissues; (2) the highest levels of beta-G spectrin occur in the nervous system; and (3) beta spectrin-G in striated muscle is associated with points of attachment of the myofilament apparatus to adjacent cells. Nematode beta-G spectrin associates with plasma membranes at sites of cell-cell contact, beginning at the two-cell stage, and with a dramatic increase in intensity after gastrulation when most cell proliferation has been completed. Strikingly, depletion of nematode beta-G spectrin by RNA-mediated interference to undetectable levels does not affect the establishment of structural and functional polarity in epidermis and intestine. Contrary to recent speculation, beta-G spectrin is not associated with internal membranes and depletion of beta-G spectrin was not associated with any detectable defects in secretion. Instead beta-G spectrin-deficient nematodes arrest as early larvae with progressive defects in the musculature and nervous system. Therefore, C. elegans beta-G spectrin is required for normal muscle and neuron function, but is dispensable for embryonic elongation and establishment of early epithelial polarity. We hypothesize that heteromeric spectrin evolved in metazoans in response to the needs of cells in the context of mechanically integrated tissues that can withstand the rigors imposed by an active organism.  相似文献   

4.
Friend erythroleukemia cells, grown in the presence of dimethyl sulfoxide for 3 d, synthesize unequal amounts of the two chains (alpha and beta) of spectrin with approximately 15-30% more beta than alpha spectrin. When cells were ruptured by nitrogen cavitation, nascent alpha and beta spectrin were found to be associated with a membranous cell fraction and were not detected in the soluble cytoplasmic cell fraction. Nascent membrane-bound spectrin appeared not to be protected by membranes, since it was susceptible to trypsin degradation in the absence of detergent. On fractionation of cells with 1% Triton X-100, more (1.75-fold) nascent spectrin was found in the Triton-soluble fraction than in the Triton-insoluble fraction (cytoskeleton). In the Triton-soluble fraction, there was 55% more nascent beta spectrin than alpha spectrin, while the cytoskeleton contained nearly equal amounts of alpha and beta spectrin. Cells were pulse-labeled with L-[35S]methionine for 2 min and chase incubated for varying periods of time from 15 to 90 min with nonradioactive L-methionine. Radioactive spectrin accumulated in the Triton-soluble fraction for the first 15 min of chase incubation and then dropped by 25% in the next hour. By contrast, the amount of radioactive spectrin in the Triton-insoluble fraction rose gradually for 1 h of the chase period. This indicates that, in Friend erythroleukemia cells, a pool of membrane-bound spectrin containing an excess of the beta polypeptide is used to form the cytoskeletal system which is composed of equal molar amounts of alpha and beta spectrin. The location of spectrin was determined by immunoelectron microscopy. Small amounts of spectrin were detected in cells not treated with dimethyl sulfoxide and in these cells it was located on the surface membrane and within the cytoplasm. On treatment with dimethyl sulfoxide, complex vacuolar structures containing viruses appeared in the cells. In cells treated with dimethyl sulfoxide for 3 d 30% of the spectrin was near the outer membrane and 25% was associated with vacuolar structures, whereas in cells treated for 5 and 7 d the majority of spectrin (57-61%) was located in the vacuolar areas.  相似文献   

5.
Spectrin, an important component of the mammalian erythrocyte membrane skeleton, is a heterodimeric protein with alpha and beta subunits of 280 and 246 kDa, respectively. Spectrin-like proteins have also been demonstrated in a wide variety of nonerythroid cells. To examine the hypothesis that nonerythroid beta spectrins may be encoded by the "erythroid" beta spectrin gene, we have isolated cDNA clones from a human fetal skeletal muscle library by hybridization to a previously described red cell beta spectrin cDNA. Detailed comparison of muscle and erythroid beta spectrin cDNAs has revealed sequence identity over the majority of their lengths, confirming that they are the product of the same gene. However, there is a sharp divergence in sequence at their 3' ends. A consequence of this divergence is the replacement of the carboxyl terminus of erythroid beta spectrin with a different, longer carboxyl-terminal domain in skeletal muscle. We hypothesize that tissue-specific differential polyadenylation leads to the selective activation of a donor splice site within the beta spectrin coding sequence, splicing downstream nonerythroid exons into the mature muscle beta spectrin mRNA. We predict that replacement, in nonerythroid cells, of the beta spectrin carboxyl terminus, known to participate in spectrin self-association and phosphorylation, has significant functional consequences. These data may explain previously reported nonerythroid beta spectrin isoforms that resemble red cell beta spectrin by immunochemical analysis.  相似文献   

6.
7.
During Caenorhabditis elegans development, the embryo acquires its vermiform shape due to changes in the shape of epithelial cells, a process that requires an apically localized actin cytoskeleton. We show that SMA-1, an ortholog of beta(H)-spectrin required for normal morphogenesis, localizes to the apical membrane of epithelial cells when these cells are rapidly elongating. In spc-1 alpha-spectrin mutants, SMA-1 localizes to the apical membrane but its organization is altered, consistent with the hypothesis these proteins act together to form an apically localized spectrin-based membrane skeleton (SBMS). SMA-1 is required to maintain the association between actin and the apical membrane; sma-1 mutant embryos fail to elongate because actin, which provides the driving force for cell shape change, dissociates from the apical membrane skeleton during morphogenesis. Analysis of sma-1 expression constructs and mutant strains indicates SMA-1 maintains the association between actin and the apical membrane via interactions at its N-terminus and this activity is independent of alpha-spectrin. SMA-1 also preserves dynamic changes in the organization of the apical membrane skeleton. Taken together, our results show the SMA-1 SBMS plays a dynamic role in converting changes in actin organization into changes in epithelial cell shape during C. elegans embryogenesis.  相似文献   

8.
9.
Active preparations of Na+,K(+)-ATPase containing three types of catalytic isoforms were isolated from the bovine brain to study the structure and function of the sodium pump. Na+,K(+)-ATPase from the brain grey matter was found to have a biphasic kinetics with respect to ouabain inhibition and to consist of a set of isozymes with subunit composition of alpha 1 beta 1, alpha 2 beta m and alpha 3 beta m (where m = 1 and/or 2). The alpha 1 beta 1 form clearly dominated. For the first time, glycosylation of the beta 1-subunit of the alpha 1 beta 1-type isozymes isolated from the kidney and brain was shown to be different. Na+,K(+)-ATPase from the brain stem and axolemma consisted mainly of a mixture of alpha 2 beta 1 and alpha 3 beta 1 isozymes having identical ouabain inhibition constants. In epithelial and arterial smooth muscle cells, where the plasma membrane is divided into functionally and biochemically distinct domains, the polarized distribution of Na+,K(+)-ATPase is maintained through interactions with the membrane cytoskeleton proteins ankyrin and spectrin (Nelson and Hammerton, 1989; Lee et al., 1996). We were the first to show the presence of the cytoskeleton protein tubulin (beta 5-isoform) and glyceraldehyde-3-phosphate dehydrogenase in a high-molecular-weight complex with Na+,K(+)-ATPase in brain stem neuron cells containing alpha 2 beta 1 and alpha 3 beta 1 isozymes. Consequently, the influence of not only subunit composition, but also of glycan and cytoskeleton structures and other plasma membrane-associated proteins on the functional properties of Na+,K(+)-ATPase isozymes is evident.  相似文献   

10.
The membrane-skeleton of adult chicken neurons in the cerebellum and optic system is composed of polypeptides structurally and functionally related to the erythroid proteins spectrin and ankyrin, respectively. Neuronal spectrin comprises two distinct complexes that share a common alpha subunit (Mr 240,000) but which have structurally distinct polymorphic subunits (beta' beta spectrin; Mr 220/225,000; gamma spectrin, Mr 235,000); the brain-specific form (alpha gamma spectrin or fodrin) and an erythrocyte-specific form (alpha beta' beta spectrin). Two structurally related isoforms of ankyrin have also been identified and are termed alpha (Mr 260,000) and beta (Mr 237,000) ankyrin. Immunofluorescence demonstrates that the variants of spectrin and ankyrin, respectively, have different distributions within neurons. On the one hand, alpha gamma spectrin and beta ankyrin are present throughout the neuron, in the perikaryon, dendrites, and axon, whereas alpha beta' spectrin and alpha ankyrin are localized exclusively in the perikaryon and dendrites where they are actively segregated from alpha gamma spectrin and other components of axonal transport. This asymmetric distribution of spectrin and ankyrin isoforms is established in distinct stages during neuronal morphogenesis. Early in cerebellar and retinal development, alpha gamma spectrin is expressed in mitotic cells. Subsequently beta ankyrin and alpha gamma spectrin are coexpressed in postmitotic cells and gradually accumulate on the plasma membrane in a uniform pattern throughout the neuron during the phase of cell growth. At the onset of synaptogenesis and the cessation of cell growth, their levels of synthesis decline sharply while the assembled proteins remained as stable membrane components. Concomitantly, there is a dramatic induction in the accumulation of alpha ankyrin and alpha beta' spectrin, whose assembly is limited to the plasma membrane of the perikarya and dendrites. These results demonstrate that two successive, developmentally regulated programs of ankyrin and spectrin expression and patterning on the plasma membrane are involved in the assembly of the spectrin-based asymmetry in the neuronal membrane-skeleton, and that their asymmetric distribution is actively maintained throughout the life of the neuron.  相似文献   

11.
The spectrin cytoskeleton assembles within discrete regions of the plasma membrane in a wide range of animal cell types. Although recent studies carried out in vertebrate systems indicate that spectrin assembly occurs indirectly through the adapter protein ankyrin, recent studies in Drosophila have established that spectrin can also assemble through a direct ankyrin-independent mechanism. Here we tested specific regions of the spectrin molecule for a role in polarized assembly and function. First, we tested mutant beta-spectrins lacking ankyrin binding activity and/or the COOH-terminal pleckstrin homology (PH) domain for their assembly competence in midgut, salivary gland, and larval brain. Remarkably, three different assembly mechanisms operate in these three cell types: 1) neither site was required for assembly in salivary gland; 2) only the PH domain was required in midgut copper cells; and 3) either one of the two sites was sufficient for spectrin assembly in larval brain. Further characterization of the PH domain revealed that it binds strongly to lipid mixtures containing phosphatidylinositol 4,5-bisphosphate (PIP(2)) but not phosphatidylinositol 3,4,5-trisphosphate. A K8Q mutation in the lipid binding region of the PH domain eliminated the PIP(2) interaction in vitro, yet the mutant protein retained full biological function in vivo. Reporter gene studies revealed that PIP(2) and the spectrin PH domain codistribute with one another in cells but not with authentic wild type alphabeta-spectrin. Thus, it appears that the PH domain imparts membrane targeting activity through a second mechanism that takes precedence over its PIP(2) binding activity.  相似文献   

12.
Harper SL  Begg GE  Speicher DW 《Biochemistry》2001,40(33):9935-9943
Human erythrocyte spectrin is an antiparallel heterodimer comprised of a 280 kDa alpha subunit and a 246 kDa beta subunit which further associates into tetramers in the red cell membrane cytoskeleton. Lateral association of the flexible rodlike monomers involves a multiple-step process that is initiated by a high affinity association near the actin-binding end of the molecule (dimer nucleation site). In this study, recombinant alpha and beta proteins comprising two or four "spectrin type" motifs with and without adjacent, terminal nonhomologous domains were evaluated for their relative contributions to dimer initiation, and the thermodynamic properties of these heterodimer complexes were measured. Sedimentation equilibrium studies showed that in the absence of the heterologous subunit, individual recombinant proteins formed weak homodimers (K(d) > 0.3 mM). When 2-motif (alpha20-21 and beta1-2) and 4-motif (alpha18-21 and beta1-4) recombinants lacking the terminal nonhomologous domains were paired with the complementary protein, high affinity heterodimers were formed in sedimentation equilibrium analysis. Both the alpha20-21/beta1-2 complex and the alpha20-21EF/betaABD1-2 complex showed stoichiometric binding with similar binding affinities (K(d) approximately 10 nM) using isothermal titration calorimetry. The alpha20-21/beta1-2 complex showed an enthalpy of -10 kcal/mol, while the alpha20-21EF/betaABD1-2 complex showed an enthalpy of -13 kcal/mol. Pull-down assays using alpha spectrin GST fusion proteins showed strong associations between all heterodimer complexes in physiological buffer, but all heterodimer complexes were destabilized by the presence of Triton X-100 and other detergents. Complexes lacking the nonhomologous domains were destabilized to a greater extent than complexes that included the nonhomologous domains. The detergent effect appears to be responsible for the apparent essential role of the nonhomologous domains in prior reports. Taken together, our results indicate that the terminal nonhomologous domains do not contribute to dimer initiation nor are they required for formation of high affinity spectrin heterodimers in physiological buffers.  相似文献   

13.
Elongation of the epidermis of the nematode Caenorhabditis elegans involves both actomyosin-mediated changes in lateral epidermal cell shape and body muscle attachment to dorsal and ventral epidermal cells via intermediate-filament/hemidesmosome structures. vab-19 mutants are defective in epidermal elongation and muscle attachment to the epidermis. VAB-19 is a member of a conserved family of ankyrin repeat-containing proteins that includes the human tumor suppressor Kank. In epidermal cells, VAB-19::GFP localizes with components of epidermal attachment structures. In vab-19 mutants, epidermal attachment structures form normally but do not remain localized to muscle-adjacent regions of the epidermis. VAB-19 localization requires function of the transmembrane attachment structure component Myotactin. vab-19 mutants also display aberrant actin organization in the epidermis. Loss of function in the spectrin SMA-1 partly bypasses the requirement for VAB-19 in elongation, suggesting that VAB-19 and SMA-1/spectrin might play antagonistic roles in regulation of the actin cytoskeleton.  相似文献   

14.
Using alpha and beta spectrin mammalian antibodies on Western blotting, we demonstrated that lizard ovarian follicles contain two isoforms of alpha spectrin, Mr 94 and 134 kDa, and a 230 kDa beta spectrin, and that their pattern modifies in relation to pyriform cell differentiation. In fact, a positive immunoreaction is firstly evident within follicular epithelium of previtellogenic follicles when small cells differentiate into pyriform cells via intermediate cells. Later on, immunostain is present in pyriform cells and in the oocyte cortex that previously appears unstained. It is noteworthy that immunostain is also present on small cells located in contact with the oocyte membrane, but not on those located under the basal lamina and among pyriform cells, not engaged in pyriform cell differentiation. During the subsequent stages of previtellogenic phase, spectrin immunostain over the follicular epithelium and in the oocyte cortex does not change. By contrast, in vitellogenic follicles, when the follicular epithelium is constituted only by small cells, immunostain is evident at the level of the oocyte cortex and the cytoplasm of regressing pyriform cells. The present data strongly suggest that the alpha and beta spectrin pattern put in evidence during the different phases of lizard oocyte growth is related to the differentiation of small into pyriform cells, where such protein may guarantee a relationship between surface glycoproteins (Andreuccetti et al., 2001: Anat Rec 263:1-9), and the cytoskeleton distribution (Maurizii et al., 2000: Raf Mol Reprod Dev 57:159-166). Furthermore, the distribution of spectrin mRNA, similar to that observed for the protein, demonstrates that spectrin, once synthesized within pyriform cells, is transferred through intercellular bridges in the oocyte cortex, thus confirming that pyriform cells are nurse that significantly are involved in the oocyte growth. Finally, the present data demonstrate that alpha spectrin of lizard ovarian follicles has Mr quite different from those so far reported and may constitute a new group of isoforms. This important result will be the focus of future experiments. Mol. Reprod. Dev. 67: 101-107, 2004.  相似文献   

15.
A three-dimensional single-particle tracking system was combined with an optical trap to investigate the behavior of transmembrane adhesion proteins. We exploited this setup to investigate which part of the cell adhesion protein LFA-1 forms a connection to the cytoskeleton after binding to its ligand ICAM-1. LFA-1 is an integrin consisting of an alpha and a beta chain. Thus far, only the cytoplasmic tail of the beta chain is known to form a connection to the cytoskeleton. We investigated cells that express a mutant form of LFA-1 that lacks the complete beta cytoplasmic tail and therefore is not thought to bind to the cytoskeleton. Interestingly, single-particle tracking measurements using beads coated with the ligand ICAM-1 indicate that this mutant form of LFA-1 does not move freely within the cell membrane, suggesting that LFA-1 is still connected to the cytoskeleton network. This finding is strongly supported by the observation that LFA-1 exhibits a more diffusive motion when the cytoskeleton network is disrupted and confirmed by the optical trap measurements used to force the proteins to move through the membrane. Collectively, our findings suggest that the interaction of LFA-1 with the cytoskeleton cannot solely be attributed to the cytoplasmic part of the beta chain.  相似文献   

16.
Hemin-mediated dissociation of erythrocyte membrane skeletal proteins   总被引:2,自引:0,他引:2  
Spectrin tetramers and oligomers in normal erythrocytes are cross-linked by actin and protein 4.1 to form a two-dimensional membrane skeletal network. In the present study, we find that hemin, a breakdown product of hemoglobin, progressively (a) alters the conformation of spectrin as revealed by electron microscope studies and by the decreased resistance of spectrin to proteolytic degradation, (b) alters the conformation of protein 4.1 as revealed by the increased mobility of protein 4.1 on nondenaturing gel electrophoresis, (c) weakens spectrin dimer alpha beta-dimer alpha beta, spectrin alpha-spectrin beta, as well as spectrin-protein 4.1 associations as analyzed by nondenaturing gel electrophoresis, and (d) diminishes the structural stability of erythrocyte membrane skeletons (i.e. Triton-insoluble ghost residues) subjected to mechanical shearing. Since hemin may be liberated from oxidized or unstable mutant hemoglobin under pathological conditions, these hemin-induced effects on spectrin, protein 4.1, and membrane skeletal stability may play a role in the membrane lesion of these erythrocytes.  相似文献   

17.
Plasmodium falciparum dramatically modifies the structure and function of the membrane of the parasitized host erythrocyte. Altered membrane properties are the consequence of the interaction of a group of exported malaria proteins with host cell membrane proteins. KAHRP (the knob-associated histidine-rich protein), a member of this group, has been shown to interact with erythrocyte membrane skeletal protein spectrin. However, the molecular basis for this interaction has yet to be defined. In the present study, we defined the binding motifs in both KAHRP and spectrin and identified a functional role for this interaction. We showed that spectrin bound to a 72-amino-acid KAHRP fragment (residues 370-441). Among nine-spectrin fragments, which encompass the entire alpha and beta spectrin molecules (four alpha spectrin and five beta spectrin fragments), KAHRP bound only to one, the alpha N-5 fragment. The KAHRP-binding site within the alpha N-5 fragment was localized uniquely to repeat 4. The interaction of full-length spectrin dimer to KAHRP was inhibited by repeat 4 of alpha spectrin. Importantly, resealing of this repeat peptide into erythrocytes mislocalized KAHRP in the parasitized cells. We concluded that the interaction of KAHRP with spectrin is critical for appropriate membrane localization of KAHRP in parasitized erythrocytes. As the presence of KAHRP at the erythrocyte membrane is necessary for cytoadherence in vivo, our findings have implications for the development of new therapies for mitigating the severity of malaria infection.  相似文献   

18.
The adhesion of microvascular endothelial cells to their underlying basement membrane is important for the maintenance of vascular integrity. Most integrins function in endothelial cell adhesion by forming a transmembrane link between their basement membrane ligand and the actin microfilament cytoskeleton. The alpha 6 beta 4 laminin-binding integrin, however, associates with vimentin intermediate filaments (IFs) in microvascular endothelial cells and therefore is likely to uniquely contribute to the barrier function of the endothelium. In this study, we examined the regulation of alpha 6 beta 4-vimentin IF association. We first tested the requirement for alpha 6 beta 4-laminin interactions and actin microfilament assembly. We found that alpha 6 beta 4 associated with vimentin IFs when cells were adherent to either laminin 5 or fibronectin, indicating that this association can occur independent of alpha 6 beta 4-ligand interactions. Additionally, we found that alpha 6 beta 4 was associated with vimentin IFs prior to cell spreading, indicating that changes in the microfilament cytoskeleton associated with changes in cell shape are also not required. Thus, although the association of alpha 6 beta 4 with vimentin IFs may strengthen cell adhesion by providing endothelial cells with an additional transmembrane linkage between the basement membrane and the cytoskeleton, this association is not itself regulated by alpha 6 beta 4-mediated adhesion. Finally, we tested the role of plectin in the association of alpha 6 beta 4 with vimentin IFs. Plectin is known to bind in vitro to both IFs and the beta 4 cytoplasmic domain (beta 4 tail), suggesting that it may be important for this linkage. Therefore, we generated deletion mutants of the beta 4 tail and compared the ability of alpha 6 beta 4 containing these deletions to associate with vimentin IFs. We targeted the two regions of the beta 4 tail known to bind to plectin IN VITRO: the N-terminal and C-terminal plectin binding sites. We found that deletion of the N-terminal binding site inhibited the association of alpha 6 beta 4 with vimentin IFs. Thus, plectin-beta 4 tail interactions may play an important role in connecting alpha 6 beta 4 with vimentin IFs and may prove to be important targets in the regulation of this association in endothelial cells.  相似文献   

19.
Murine erythroleukemia (MEL) cells represent a valuable system to study the biogenesis of the cytoskeleton during erythroid differentiation. When attached to fibronectin-coated dishes MEL cells induce, upon addition of DMSO, a 7-d differentiation process during which they enucleate and reach the reticulocyte stage (Patel, V. P., and H. F. Lodish. 1987. J. Cell Biol. 105:3105-3118); they accumulate band 3, spectrin, and ankyrin in amounts equivalent to those found in mature red blood cells. To follow the biosynthesis of spectrin during differentiation, membranes and cytoskeletal proteins of cells metabolically labeled with [35S]methionine were solubilized by SDS and alpha and beta spectrins were recovered by specific immunoadsorption. In both uninduced and 3-d induced cells, the relative synthesis of alpha/beta spectrin is approximately 1:3. In uninduced MEL cells newly synthesized alpha and beta spectrins are degraded with a similar half-life of approximately 10 h. In contrast, in 3-d differentiated MEL cells newly made beta spectrin is much more unstable than alpha spectrin; the half-lives of alpha and beta spectrin chains are approximately 22 and 8 h, respectively. Thus, accumulation of equal amounts of alpha and beta spectrin is caused by unequal synthesis and unequal degradation. As judged by Northern blot analyses, the level of actin mRNA is relatively constant throughout the 7-d differentiation period. alpha and beta spectrin mRNAs are barely detectable in uninduced cells, increase during the first 4 d of induction, and remain constant thereafter. In contrast, band 3 mRNA is first detectable on day 4 of differentiation. Thus, most of the spectrin that accumulates in enucleating reticulocytes is synthesized during the last few days of erythropoiesis, concomitant with the onset of band 3 synthesis. To determine whether this was occurring in normal mouse erythropoiesis, we analyzed the rate of appearance of labeled membrane proteins in mature erythrocytes after a single injection of [35S]methionine. Our results show that most of the spectrin and band 3 in mature erythrocytes is synthesized during the last days of bone marrow erythropoiesis, and that, in the marrow, band 3 and protein 4.1 are synthesized at a somewhat later stage of development than are alpha and beta spectrin, ankyrin, and actin.  相似文献   

20.
Mutations in the unc-52 locus of Caenorhabditis elegans have been classified into three different groups based on their complex pattern of complementation. These mutations result in progressive paralysis (class 1 mutations) or in lethality (class 2 and 3 mutations). The paralysis exhibited by animals carrying class 1 mutations is caused by disruption of the myofilaments at their points of attachment to the cell membrane in the body wall muscle cells. We have determined that mutations of this class also have an effect on the somatic gonad, and this may be due to a similar disruption in the myoepithelial sheath cells of the uterus, or in the uterine muscle cells. Mutations that suppress the body wall muscle defects of the class 1 unc-52 mutations have been isolated, and they define a new locus, sup-38. Only the muscle disorganization of the Unc-52 mutants is suppressed; the gonad abnormalities are not, and the suppressors do not rescue the lethal phenotype of the class 2 and class 3 mutations. The suppressor mutations on their own exhibit a variable degree of gonad and muscle disorganization. Putative null sup-38 mutations cause maternal-effect lethality which is rescued by a wild-type copy of the locus in the zygote. These loss-of-function mutations have no effect on the body wall muscle structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号