共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragments of bundle sheath strands, free of mesophyll cells and showing a chlorophyll a/b ratio of 6.0 to 6.6 were prepared from Zea mays by a mechanical method. They were unable to photoreduce ferricyanide but were able to photoreduce the membrane-permeant 2,5-dimethylquinone at a rate of 250 to 420 microequivalents per hour per mg chlorophyll (μeq/hr · mg Chl) at 21 C. In the presence of the catalase inhibitor KCN, methylviologen catalyzed a Mehler reaction at a rate of 120 to 180 μeq/hr · mg Chl. This was increased to 200 to 350 μeq/hr · mg Chl when the uncoupler methylamine was added. The rate of endogenous pseudocyclic electron flow, detected as a Mehler reaction, was also considerable (100 to 150 μeq/hr · mg Chl with methylamine). Diaminodurene supported a high rate of photosystem I-mediated electron flow to methylviologen (400 to 750 μeq/hr · mg Chl). 相似文献
2.
Chollet R 《Plant physiology》1973,51(4):787-792
Photosynthetically active bundle sheath strands capable of assimilating up to 8 micromoles CO2 per milligram chlorophyll per hour have been isolated from fully expanded leaves of Zea mays L. Mesophyll cell contamination of the preparations was negligible, as evidenced by light and electron microscopy and by a high ratio of chlorophyll a to chlorophyll b in the strands. Ribose 5-phosphate markedly stimulated the rate of photosynthetic 14CO2 fixation by the isolated strands. In contrast, both pyruvate and phosphoenolpyruvate had a comparatively small stimulatory effect on bundle sheath 14CO2 fixation. After 5 minutes of photosynthesis in 14C-bicarbonate, 95% of the incorporated 14C was found in compounds other than C4-dicarboxylic acids, most notably in 3-phosphoglycerate and sugar phosphates. A similar distribution of 14C was observed in the presence of exogenous ribose 5-phosphate. Extracts of bundle sheath strands contained high specific activities of “malic” enzyme, phosphoglycolate phosphatase, hydroxypyruvate reductase, and ribulose 1,5-diphosphate carboxylase, whereas the specific activities of NADP+-malate dehydrogenase and phosphopyruvate carboxylase were extremely low. These results indicate that the Calvin cycle occurs in the bundle sheath cells of maize. 相似文献
3.
Bundle sheath cells were enzymatically isolated from representatives of three groups of C4 plants: Zea mays (NADP malic enzyme type), Panicum miliaceum (NAD malic enzyme type), and Panicum maximum (phosphoenolpyruvate (PEP) carboxykinase type). Cellular organelles from bundle sheath homogenates were partially resolved by differential centrifugation and on isopycnic sucrose density gradients in order to study compartmentation of photosynthetic enzymes. A 48-h-dark pretreatment of the leaves allowed the isolation of relatively intact chloroplasts. Enzymes that decarboxylate C4 acids and furnish CO2 to the Calvin cycle are localized as follows: NADP malic enzyme, chloroplastic in Z. mays; NAD malic enzyme, mitochondrial in all three species; PEP carboxykinase, chloroplastic in P. maximum. The activity of NAD malic enzyme in the three species was in the order of P. miliaceum > P. maximum > Z. mays. There were high levels of aspartate and alanine aminotransferases in bundle sheath extracts of P. miliaceum and P. maximum and substantial activity in Z. mays. In all three species, aspartate aminotransferase was mitochondrial whereas alanine aminotransferase was cytoplasmic. Based on the activity and localization of certain enzymes, the concept for aspartate and malate as transport metabolites from mesophyll to bundle sheath cells in C4 species of the three C4 groups is discussed. 相似文献
4.
Metabolite diffusion into bundle sheath cells from c(4) plants: relation to c(4) photosynthesis and plasmodesmatal function 总被引:2,自引:4,他引:2 下载免费PDF全文
The present studies provide the first measurements of the resistance to diffusive flux of metabolites between mesophyll and bundle sheath cells of C4 plants. Species examined were Panicum miliaceum, Urochloa panicoides, Atriplex spongiosa, and Zea mays. Diffusive flux of metabolites into isolated bundle sheath cells was monitored by following their metabolic transformation. Evidence was obtained that the observed rapid fluxes occurred via functional plasmodesmata. Diffusion constants were determined from the rate of transformation of limiting concentrations of metabolites via cytosolic enzymes with high potential velocities and favorable equilibrium constants. Values on a leaf chlorophyll basis ranged between 1 and 5 micromoles per minute per milligram of chlorophyll per millimolar gradient depending on the molecular weight of the metabolite and the source of bundle sheath cells. Diffusion of metabolites into these cells was unaffected by a wide variety of compounds including respiratory inhibitors, monovalent and divalent cations, and plant hormones, but it was interrupted by treatments inducing cell plasmolysis. The molecular weight exclusion limit for permeation of compounds into bundle sheath cells was in the range of 850 to 900. These cells provide an ideal system for the quantitative study of plasmodesmatal function. 相似文献
5.
A method has been developed for rapidly preparing bundle sheath cell strands from Urochloa panicoides, a phosphoenolpyruvate (PEP) carboxykinase-type C4 plant. These cells catalyzed both HCO3(-)- and oxaloacetate-dependent oxygen evolution; oxaloacetate-dependent oxygen evolution was stimulated by ATP. For this activity oxaloacetate could be replaced by aspartate plus 2-oxoglutarate. Both oxaloacetate- and aspartate plus 2-oxoglutarate-dependent oxygen evolution were accompanied by PEP production and both were inhibited by 3-mercaptopicolinic acid, an inhibitor of PEP carboxykinase. The ATP requirement for oxaloacetate- and aspartate plus 2-oxoglutarate-dependent oxygen evolution could be replaced by ADP plus malate. The increased oxygen evolution observed when malate plus ADP was added with oxaloacetate was accompanied by pyruvate production. These results are consistent with oxaloacetate being decarboxylated via PEP carboxykinase. We suggest that the ATP required for oxaloacetate decarboxylation via PEP carboxykinase may be derived by phosphorylation coupled to malate oxidation in mitochondria. These bundle sheath cells apparently contain diffusion paths for the rapid transfer of compounds as large as adenine nucleotides. 相似文献
6.
This account is focused upon the early part of my career in order to illuminate the logistics and the culture of our science in the period 1936 to 1949. A roundabout path took me from a farm in Pennsylvania to a PhD under George Burr at Minnesota in 1939. In studying the photosynthetic competence of chlorophyll formed by the green alga Chlorella in darkness, I stumbled upon the phenomenon of photoinhibition. In a two-year postdoctorate at the Smithsonian Institution, I worked under E.D. McAlister. Our major accomplishment was in making simultaneous recordings of fluorescence and CO2 uptake during the induction period. Variations in photosynthetic behavior of Chlorella led to a study of culture conditions and a recognition of the changing conditions which occur in batch cultures. A continuous culture apparatus (turbidostat) was developed as a means of attaining steady-state growth and production of uniform experimental material. I exploited the device in work at my first (and only) position at The University of Texas in 1941 and subsequent years. Study of the CO2/O2 gas exchange ratio led to the recognition of the important role of nitrate in the photosynthetic metabolism of algae. The account ends with the 1949 American Association for the Advancement of Science symposium.Invited and edited by Govindjee 相似文献
7.
Plasmodesmata between mesophyll and bundle sheath cells in relation to the exchange of C4-acids 总被引:1,自引:0,他引:1
Peter Olesen 《Planta》1975,123(2):199-202
Summary In the C4 species Salsola kali L. the frequency of plasmodesmata in the wall between mesophyll and bundle sheath cells has been determined with great precision by the use of transmission and scanning electron microscopy. The frequency of 14×108 cm-2 is rather high compared to values from other plant tissues, but if it is assumed that the postulated exchange of C4-acids occur in the desmotubulus of the plasmodesmata, the fraction of the mesophyll-bundle sheath interface occupied by plasmodesmatal pores is 10-102 times smaller than previously thought.Abbreviations TEM
transmission electron microscopy
- SEM
Scanning electron microscopy 相似文献
8.
Isolated maize bundle sheath chloroplasts showed substantial rates of noncyclic photophosphorylation. A typical rate of phosphorylation coupled to whole-chain electron transport (methylviologen or ferricyanide as acceptor) was 60 μmol per hour per milligram chlorophyll) with a coupling efficiency (P/e2) of 0.6. Partial electron transport reactions driven by photosystem I or II supported phosphorylation with P/e2 values of 0.2 to 0.3. Thus, two sites of phosphorylation seem to be associated with the photosynthetic chain in much the same way as in spinach chloroplasts. 相似文献
9.
Both malate and aspartate were decarboxylated at the 4-carbonposition by isolated bundle sheath strands of C4 plants butto different extents depending upon the species. In Digitariasanguinalis, an NADP-malic enzyme (NADP-ME) species, 100 µMoxalic acid blocked malate decarboxylation through NADP-ME withoutaffecting aspartate decarboxylation which apparently occursthrough NAD-ME. In several phosphoenolpyruvate carboxykinase(PEP-CK) type C4 species, 200 µM 3-mercaptopicolinic acid(3-MPA), an inhibitor of PEP-CK, specifically inhibited themalate decarboxylation and partially inhibited aspartate decarboxylation.The aspartate decarboxylation insensitive to 3-MPA may occurthrough NAD-ME. Neither inhibitor prevented C4 acid decarboxylationin bundle sheath cells of NAD-ME species. The inhibitors thusserved to differentiate between the decarboxylation of C4 acidsin PEP-CK and NADP-ME type C4 species through their major decarboxylasefrom that of their less active decarboxylation through NAD-ME.
1 Present address: Department of Biochemistry and Microbiology,Rutgers University, New Brunswick, NJ 08903, U. S. A. (Received January 28, 1977; ) 相似文献
10.
Enzymes of the C4, C3 pathway and photorespiration have beenanalyzed for P. hians and P. milioides, which have chlorenchymatousbundle sheath cells in the leaves. On whole leaf extracts thelevels of PEP carboxylase are relatively low compared to C4species, RuDP carboxylase is typical of C3 species, and enzymesof photorespiratory metabolism appear somewhat intermediatebetween C3 and C4. Substantial levels of PEP carboxylase, RuDPcarboxylase, and photorespiratory enzymes were found in bothmesophyll and bundle sheath cells. Low levels of C4-acid decarboxylatingenzymes may limit the capacity for C4 photosynthesis in P. hiansand P. milioides. The results on enzyme activity and distributionbetween mesophyll and bundle sheath cells are consistent withCO2 fixation via C3 pathway in these two species.
1 This research was supported by the College of Agriculturaland Life Sciences, University of Wisconsin, Madison; and bythe University of Wisconsin Research Committee with funds fromthe Wisconsin Alumni Research Foundation; and by the NationalScience Foundation Grant BMS 74-09611. (Received September 16, 1975; ) 相似文献
11.
Oliver DJ 《Plant physiology》1978,62(5):690-692
Net photosynthetic 14CO2 fixation by isolated maize (Zea mays) bundle sheath strands was stimulated 20 to 35% by the inclusion of l-glutamate or l-aspartate in the reaction mixture. Maximal stimulation occurred at a 7.5 mm concentration of either amino acid. Since the photosynthetic rate and the glutamate-dependent stimulation in the rate were equally sensitive to a photosynthetic electron transport inhibitor, 3-(p-chlorophenyl)-1,1-dimethylurea, it was concluded that glutamate did not stimulate CO2 fixation by supplying needed NADPH (NADH) through glutamate dehydrogenase. Treatment of the bundle sheath strands with glutamate inhibited glycolate synthesis by 59%. Photorespiration in this tissue, measured as the O2 inhibition of CO2 fixation (the Warburg effect), was inhibited by treatment with glutamate. The stimulation in net photosynthetic CO2 fixation probably results from the decrease in photorespiratory CO2 loss. This metabolic regulation of the rate of glycolate synthesis and photorespiration observed with isolated bundle sheath strands could account for the inability to detect rapid photorespiration in the mature intact maize leaf. 相似文献
12.
Aspartate stimulated by as much as three fold the rate of malate decarboxylation by Zea mays bundle sheath cells. Both the basal and aspartate stimulated rates of malate decarboxylation were light-dependent. Stimulation appeared to be due to aspartate as such, rather than depending on aspartate metabolism, and was due partly to a reduction in the malate concentration required for maximum decarboxylation and partly to an increased maximum velocity of decarboxylation. The extractable activities of NADP malic enzyme, glyceraldehyde phosphate dehydrogenase, and 3-phosphoglycerate kinase recoverable from cells were not increased by preincubating cells with aspartate, and aspartate did not affect the activity of these enzymes in cell-free extracts. It is suggested that aspartate may influence the transport of either malate into or pyruvate out of bundle sheath chloroplasts. 相似文献
13.
On the mechanism of C4 photosynthesis intermediate exchange between Kranz mesophyll and bundle sheath cells in grasses 总被引:1,自引:0,他引:1
C4 photosynthesis involves cell-to-cell exchange of photosyntheticintermediates between the Kranz mesophyll (KMS) and bundle sheath(BS) cells. This was believed to occur by simple diffusion throughplentiful plasmodesmatal (PD) connections between these celltypes. The model of C4 intermediates transport was elaboratedover 30 years ago and was based on experimental data derivedfrom measurements at the time. The model assumed that plasmodesmataoccupied about 3% of the interface between the KMS and BS cellsand that the plasmodesmata structure did not restrict metabolitemovement. Recent advances in the knowledge of plasmodesmatalstructure put these assumptions into doubt, so a new model ispresented here taking the new anatomical details into account.If one assumes simple diffusion as the sole driving force, thencalculations based on the experimental data obtained for C4grasses show that the gradients expected of C4 intermediatesbetween KMS and BS cells are about three orders of magnitudehigher than experimentally estimated. In addition, if one takesinto account that the plasmodesmata microchannel diameter mightconstrict the movement of C4 intermediates of comparable Stokesradii, the differences in concentration of photosynthetic intermediatesbetween KMS and BS cells should be further increased. We believethat simple diffusion-driven transport of C4 intermediates betweenKMS and BS cells through the plasmodesmatal microchannels isnot adequate to explain the C4 metabolite exchange during C4photosynthesis. Alternative mechanisms are proposed, involvingthe participation of desmotubule and/or active mechanisms aseither apoplasmic or vesicular transport. Key words: C4 photosynthesis, grasses, modelling, plasmodesmata, symplasmic transport
Received 10 October 2007; Revised 4 February 2008 Accepted 5 February 2008 相似文献
14.
R Popovic M Beauregard R M Leblanc 《Biochemical and biophysical research communications》1987,144(1):198-202
Photosynthetic action spectra (Formula: see text), (Carpentier, R., Larue, B. and Leblanc, R. (1984) Arch. Biochem. Biophys. 228, 534-543.), from 400 to 750 nm were studied in bundle sheath cells of maize. Photosynthetic action spectra in the presence of 10 mM ascorbate or 4 mM ribose-5-phosphate were increased and shifted through all the spectra. After the addition of 10 microM DCMU photosynthetic action spectra were remarkably diminished. On the basis of these results we suggest that the role of PSII in BS chloroplasts will be to prevent the overoxidation of PSI. It appears that in addition to PSII some endogen electron donor may regulate the PSI activity in bundle sheath cells. 相似文献
15.
In vitro translation of polyA+ mRNAs isolated from purified maize bundle sheath and mesophyll cells results in the production of distinctive, cell-specific polypeptides. Immunoprecipitation experiments show that translatable polyA+ mRNAs for phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK) and NADP-malate dehydrogenase (MDH) are prominent in mesophyll but not bundle sheath cells. On the contrary, those for sedoheptulose-1,7-bisphosphatase (SBP), fructose-1,6-bisphosphatase (FBP), NADP-malic enzyme (ME) and the small subunit of ribulose-1,5-bisphosphate carboxylase (RuBPC SS) are present only in bundle sheath cells. Moreover, polyA+ mRNAs encoding the 33 kD, 23 kD and 16 kD polypeptides of the oxygen-evolving complex (OE33, OE23 and OE16) and the light-harvesting chlorophyll a/b binding protein of photosystem II (LHCP II) are much more abundant in mesophyll than in bundle sheath cells. Northern blot analyses with cDNA clones of PEPC, PPDK, ME, RuBPC SS, OE33, OE23, OE16 and LHCP II are consistent with the conclusion that the cell-specific expression of these genes is regulated at the RNA level. The RNA level differences are especially dramatic in dark-grown maize seedlings after illumination for 24 h. 相似文献
16.
A theoretical model of the composition of the inorganic carbon pool generated in C4 leaves during steady-state photosynthesis was derived. This model gives the concentrations of CO2 and O2 in the bundle sheath cells for any given net photosynthesis rate and inorganic carbon pool size. The model predicts a bundle sheath CO2 concentration of 70 micromolar during steady state photosynthesis in a typical C4 plant, and that about 13% of the inorganic carbon generated in bundle sheath cells would leak back to the mesophyll cells, predominantly as CO2. Under these circumstances the flux of carbon through the C4 acid cycle would have to exceed the net rate of CO2 assimilation by 15.5%. With the calculated O2 concentration of 0.44 millimolar, the potential photorespiratory CO2 loss in bundle sheath cells would be about 3% of CO2 assimilation. Among the factors having a critical influence on the above values are the permeability of bundle sheath chloroplasts to HCO3−, the activity of carbonic anhydrase within these chloroplasts, the assumed stromal volume, and the permeability coefficients for CO2 and O2 diffusion across the interface between bundle sheath and mesophyll cells. The model suggests that as the net photosynthesis rate changes in C4 plants, the level and distribution of the components of the inorganic carbon pool change in such a way that C4 acid overcycling is maintained in an approximately constant ratio with respect to the net photosynthesis rate. 相似文献
17.
18.
19.
Operation of the glycolate pathway in isolated bundle sheath (BS) strands of two C4 species was demonstrated from 14C incorporation into two intermediates, glycine and serine, under conditions favourable for photorespiratory activity. Isolated BS strands fixing 14CO2 under light at physiological rates incorporate respectively 3% (Zea mays L., cv. INRA 258) and 7% (Panicum maximum Jacq.) of total 14C fixed into glycine + serine, at low bicarbonate levels (less than the Km for CO2 fixation, 0.8 mM). Higher bicarbonate concentrations depressed the percentage of incorporation into the two amino acids. No labelling was observed in the absence of added glutamate. Oxygen was required for glycine + serine labelling, since 14C incorporation into glycine was largely depressed by argon flushing, and labelling of the two amino acids was nearly suppressed by the addition of the strong reductant, dithionite, especially in maize. Two inhibitors of the glycolate pathway were tested. With α-hydroxypyridine-methanesulfonic acid, an inhibitor of glycolate oxidase, labelling of glycine and serine remained minimal whereas glycolate was accumulated. Isoniazid, an inhibitor of the transformation of glycine to serine induced a 50% increased labelling of glycine in maize BS, and a large decrease in serine labelling. In Panicum, the increase in [14C]-glycine was 90%. These results suggest that the pathway glycolate → glycine → serine operates in these plants. However, leakage of metabolites occurs in BS cells, especially in maize and a large part of newly formed glycolate, glycine and serine is exported out of the cells. Operation of ribulose-1,5-bisphosphate oxygenase activity in competition with ribulose-1,5-bisphosphate carboxylase is demonstrated by the lowering of total 14CO2 fixation when O2 is increased at low bicarbonate concentration. An interesting feature observed in maize BS, at low bicarbonate concentration, was an increase in ribulose-1,5-bisphosphate labelling when the O2 level was decreased. This was accompanied by an increase in CO2 fixation. This could indicate an increased rate in synthesis of ribulose-1,5-bisphosphate (which accumulated) due to a stimulation of ATP synthesis by cyclic photophosphorylation under anaerobic conditions. 相似文献
20.
Distribution of carboxylation and decarboxylation enzymes in isolated mesophyll cells and bundle sheath strands of C 4 plants 总被引:5,自引:0,他引:5
T M Chen W H Campbell P Dittrich C C Black 《Biochemical and biophysical research communications》1973,51(2):461-467
Mature leaves of Cyperus rotundus, Cyperus polystachyos, Digitaria decumbens, and Digitaria sanguinalis were separated, using pectinase and cellulase, into pure preparations of mesophyll cells and bundle sheath strands. Assays on these distinct leaf cell types show a clear compartmentation of phosphoenolpyruvate carboxylase, >98%, into mesophyll cells and of ribulose-1, 5-diphosphate carboxylase and malic enzyme, >98%, into the bundle sheath strands. The results clearly establish that the major CO2 uptake in mesophyll cells is via a β-carboxylation and that both a decarboxylation and a carboxylation reaction occurs in the bundle sheath strands of plants using C4-dicarboxylic acid photosynthesis. 相似文献