首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Induction of allograft tolerance in the absence of Fas-mediated apoptosis.   总被引:5,自引:0,他引:5  
Using certain immunosuppressive regimens, IL-2 knockout (KO) mice, in contrast to wild-type (wt) controls, are resistant to the induction of allograft tolerance. The mechanism by which IL-2 regulates allograft tolerance is uncertain. As IL-2 KO mice have a profound defect in Fas-mediated apoptosis, we hypothesized that Fas-mediated apoptosis of alloreactive T cells may be critical in the acquisition of allograft tolerance. To definitively study the role of Fas in the induction of transplantation tolerance, we used Fas mutant B6.MRL-lpr mice as allograft recipients of islet and vascularized cardiac transplants. Alloantigen-stimulated proliferation and apoptosis of Fas-deficient cells were also studied in vivo. Fas mutant B6.MRL-lpr (H-2b) mice rapidly rejected fully MHC-mismatched DBA/2 (H-2d) islet allografts and vascularized cardiac allografts with a tempo that is comparable to wt control mice. Both wt and B6.MRL-lpr mice transplanted with fully MHC-mismatched islet allografts or cardiac allografts can be readily tolerized by either rapamycin or combined costimulation blockade (CTLA-4Ig plus anti-CD40L mAb). Despite the profound defect of Fas-mediated apoptosis, Fas-deficient T cells can still undergo apoptotic cell death in vivo in response to alloantigen stimulation. Our study suggests that: 1) Fas is not necessarily essential for allograft tolerance, and 2) Fas-mediated apoptosis is not central to the IL-2-dependent mechanism governing the acquisition of allograft tolerance.  相似文献   

2.
Chemokine receptor blockade can diminish the recruitment of host effector cells and prolong allograft survival, but little is known of the role of chemokine receptors in promoting host sensitization. We engrafted fully allogeneic islets into streptozotocin-treated normal mice or mice with the autosomal recessive paucity of lymph node T cell (plt) mutation; the latter lack secondary lymphoid expression of the CCR7 ligands, secondary lymphoid organ chemokine (CCL21) and EBV-induced molecule-1 ligand chemokine (CCL19). plt mice showed permanent survival of islets engrafted under the kidney capsule, whereas controls rejected islet allografts in 12 days (p < 0.001), and consistent with this, plt mice had normal allogeneic T cell responses, but deficient migration of donor dendritic cell to draining lymph nodes. Peritransplant i.v. injection of donor splenocytes caused plt recipients to reject their allografts by 12 days, and sensitization at 60 days posttransplant of plt mice with well-functioning allografts restored acute rejection. Finally, islet allografts transplanted intrahepatically in plt mice were rejected approximately 12 days posttransplant, like controls, as were primarily revascularized cardiac allografts. These data show that the chemokine-directed homing of donor dendritic cell to secondary lymphoid tissues is essential for host sensitization and allograft rejection. Interruption of such homing can prevent T cell priming and islet allograft rejection despite normal T and B cell functions of the recipient, with potential clinical implications.  相似文献   

3.
Once nonobese diabetic (NOD) mice become diabetic, they are highly resistant to islet transplantation. The precise mechanism of such resistance remains largely unknown. In the present study we tested the hypothesis that islet allograft survival in the diabetic NOD mouse is determined by the interplay of diverse islet-specific T cell subsets whose activation is regulated by CD28/CD154 costimulatory signals and the common gamma-chain (gammac; a shared signaling element by receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21). We found that common gammac blockade is remarkably effective in blocking the onset and the ongoing autoimmune diabetes, whereas CD28/CD154 blockade has no effect in suppressing the ongoing diabetes. However, CD28/CD154 blockade completely blocks the alloimmune-mediated islet rejection. Also, a subset of memory-like T cells in the NOD mice is resistant to CD28/CD154 blockade, but is sensitive to the common gammac blockade. Nonetheless, neither common gammac blockade nor CD28/CD154 blockade can prevent islet allograft rejection in diabetic NOD mice. Treatment of diabetic NOD recipients with CD28/CD154 blockade plus gammac blockade markedly prolongs islet allograft survival compared with the controls. However, allograft tolerance is not achieved, and all CTLA-4Ig-, anti-CD154-, and anti-gammac-treated diabetic NOD mice eventually rejected the islet allografts. We concluded that the effector mechanisms in diabetic NOD hosts are inherently complex, and rejection in this model involves CD28/CD154/gammac-dependent and -independent mechanisms.  相似文献   

4.
Islet allografts are subject to rapid rejection through host cellular immune responses involving mononuclear cell recruitment and tissue injury. Interruption of leukocyte recruitment through chemokine receptor targeting is of therapeutic benefit in various experimental models, but little is known about the contribution of chemokine pathways to islet allograft rejection. We found that murine islets produce monocyte chemoattractant protein-1 (MCP-1; CCL2) in vitro and that islet allograft rejection was associated with intragraft expression of MCP-1 and its receptor, CCR2. We therefore investigated whether MCP-1 and CCR2 are required for the rejection of fully MHC-disparate islet allografts. Wild-type mice treated with blocking anti-MCP-1 mAb plus a brief, subtherapeutic course of rapamycin had long-term islet allograft survival, in contrast to the effect of treatment with either mAb or rapamycin alone. CCR2(-/-) mice treated with rapamycin also maintained islet allografts long-term. Both MCP/CCR2- and rapamycin-sensitive signals were required for maximal proliferation of alloreactive T cells, suggesting that MCP-1/CCR2 induce rejection by promoting alloreactive T cell clonal expansion and homing and migration. Prolonged islet allograft survival achieved by blockade of the MCP-1/CCR2 pathway plus rapamycin therapy was accompanied by a mononuclear cell infiltrate expressing the inhibitory receptor, programmed death-1 (PD-1), and its ligand (PD-L1, B7-H1), and prolongation of islet allograft survival was abrogated by anti-PD-L1 mAb therapy. These data show that the blockade of MCP-1 binding to CCR2 in conjunction with subtherapeutic immunosuppression can have profound effects on islet allograft survival and implicate the expression of the PD-1/PD-L1 pathway in the regulation of physiologic responses in vivo.  相似文献   

5.
The possibility that islets play a role in graft rejection during islet transplantation for type-1 diabetes patients holds promise for ex vivo islet manipulation and for specific anti-rejection therapy. Interleukin (IL)-15 is a T cell growth factor and chemoattractant that is expressed by non-T cells. Intragraft expression of IL-15 is elevated during acute rejection in patients and in mice, and systemic blockade of IL-15 in mice prolongs allograft survival. However, the source of IL-15 in these conditions is undetermined. Since epithelial cell-derived IL-15 promotes lymphocyte proliferation in culture, we sought to determine whether islet-derived IL-15 promotes rejection in mice.We designed antisense oligodeoxyribonucleotide molecules that target mouse IL-15. Uptake of FITC-labeled antisense molecules and efficacy of IL-15 inhibition in IFNgamma-stimulated islets were evaluated. Islets exhibited typical cytoplasmatic distribution of antisense molecules and produced IL-15 levels that were comparable to non-stimulated cells. Antisense-treated islet allografts, that were transplanted across multiple minor-histocompatibility-antigen mismatched strains of mice, were accepted at a higher rate than control-antisense treated islets or untreated islets (88.9% vs. 37.5% and 20%, respectively). Our results suggest that islet-derived IL-15 may be involved in acute islet allograft rejection.  相似文献   

6.
The embryo expresses paternal Ags foreign to the mother and therefore has been viewed as an allograft. It has been shown that anergic T cells generated by blocking of the CD28/B7 costimulatory pathway with anti B7-1 and anti B7-2 mAbs can be transferred as suppresser cells to prevent allograft rejection. Little is known, however, about the in vivo function of anti-B7-treated T cells after their transfer into abortion-prone mice in the maintenance of materno-fetal tolerance. In the present study, abortion-prone CBA/J females mated with DBA/2 males were administered anti-B7-1 and anti-B7-2 mAbs on day 4 of gestation (murine implantation window). The anti-B7-treated T cells subsequently were adoptively transferred into abortion-prone CBA/J mice. We demonstrated that costimulation blockade with anti-B7 mAbs at the time of implantation resulted in altered allogeneic T cell response and overcame increased maternal rejection to the fetus in the CBA/JxDBA/2 system. The transferred anti-B7-treated T cells appeared to be regulatory, decreasing responsiveness and generating clonal deviation in maternal recipient T cells. The transferred CFSE-labeled T cells were found to reside in the spleen and uterine draining lymph nodes, and a few were localized to the materno-fetal interface of the maternal recipient. Our findings suggest that the anti-B7-treated T cells not only function as potent suppresser cells, but also exert an immunoregulatory effect on the maternal recipient T cells, which cosuppresses maternal rejection to the fetus. This procedure might be considered potentially useful for fetal survival when used as an immunotherapy for human recurrent spontaneous abortion.  相似文献   

7.
Both humoral and cellular immune responses are involved in renal allograft rejection. Interleukin (IL)-6 is a regulatory cytokine for both B and Foxp3 (forkhead box P3)-expressing regulatory T (Treg) cells. This study was designed to investigate the impact of donor IL-6 production on renal allograft survival. Donor kidneys from IL-6 knockout (KO) vs. wild-type (WT) C57BL/6 mice (H-2(b)) were orthotopically transplanted to nephrotomized BALB/c mice (H-2(d)). Alloantibodies and Treg cells were examined by fluorescence-activated cell sorting analysis. Graft survival was determined by the time to graft failure. Here, we showed that a deficiency in IL-6 expression in donor kidneys significantly prolonged renal allograft survival compared with WT controls. IL-6 protein was upregulated in renal tubules and endothelium of renal allografts following rejection, which correlated with an increase in serum IL-6 compared with that in those receiving KO grafts or naive controls. The absence of graft-producing IL-6 or lower levels of serum IL-6 in the recipients receiving IL-6 KO allografts was associated with decreased circulating anti-graft alloantibodies and increased the percentage of intragraft CD4(+)CD25(+)Foxp3(+) Treg cells compared with those with WT allografts. In conclusion, the lack of graft-producing IL-6 significantly prolongs renal allograft survival, which is associated with reduced alloantibody production and/or increased intragraft Treg cell population, implying that targeting donor IL-6 may effectively prevent both humoral and cellular rejection of kidney transplants.  相似文献   

8.
RAGE ligation affects T cell activation and controls T cell differentiation   总被引:1,自引:0,他引:1  
The pattern recognition receptor, RAGE, has been shown to be involved in adaptive immune responses but its role on the components of these responses is not well understood. We have studied the effects of a small molecule inhibitor of RAGE and the deletion of the receptor (RAGE-/- mice) on T cell responses involved in autoimmunity and allograft rejection. Syngeneic islet graft and islet allograft rejection was reduced in NOD and B6 mice treated with TTP488, a small molecule RAGE inhibitor (p < 0.001). RAGE-/- mice with streptozotocin-induced diabetes showed delayed rejection of islet allografts compared with wild type (WT) mice (p < 0.02). This response in vivo correlated with reduced proliferative responses of RAGE-/- T cells in MLRs and in WT T cells cultured with TTP488. Overall T cell proliferation following activation with anti-CD3 and anti-CD28 mAbs were similar in RAGE-/- and WT cells, but RAGE-/- T cells did not respond to costimulation with anti-CD28 mAb. Furthermore, culture supernatants from cultures with anti-CD3 and anti-CD28 mAbs showed higher levels of IL-10, IL-5, and TNF-alpha with RAGE-/- compared with WT T cells, and WT T cells showed reduced production of IFN-gamma in the presence of TTP488, suggesting that RAGE may be important in the differentiation of T cell subjects. Indeed, by real-time PCR, we found higher levels of RAGE mRNA expression on clonal T cells activated under Th1 differentiating conditions. We conclude that activation of RAGE on T cells is involved in early events that lead to differentiation of Th1(+) T cells.  相似文献   

9.
The poor success in controlling small bowel (SB) allograft rejection is partially attributed to the unique immune environment in the donor intestine. We hypothesized that Ag-induced activation of donor-derived T cells contributes to the initiation of SB allograft rejection. To address the role of donor T cell activation in SB transplantation, SB grafts from DO11.10 TCR transgenic mice (BALB/c, H-2L(d+)) were transplanted into BALB/c (isografts), or single class I MHC-mismatched (L(d)-deficient) BALB/c H-2(dm2) (dm2, H-2L(d-)) mutant mice (allografts). Graft survival was followed after injection of control or antigenic OVA(323-339) peptide. Eighty percent of SB allografts developed severe rejection in mice treated with antigenic peptide, whereas <20% of allografts were rejected in mice treated with control peptide (p < 0.05). Isografts survived >30 days regardless of OVA(323-339) administration. Activation of donor T cells increased intragraft expression of proinflammatory cytokine (IFN-gamma) and CXC chemokine IFN-gamma-inducible protein-10 mRNA and enhanced activation and accumulation of host NK and T cells in SB allografts. Treatment of mice with neutralizing anti-IFN-gamma-inducible protein-10 mAb increased SB allograft survival in Ag-treated mice (67%; p < 0.05) and reduced accumulation of host T cells and NK cells in the lamina propria but not mesenteric lymph nodes. These results suggest that activation of donor T cells after SB allotransplantation induces production of a Th1-like profile of cytokines and CXC chemokines that enhance infiltration of host T cells and NK cells in SB allografts. Blocking this pathway may be of therapeutic value in controlling SB allograft rejection.  相似文献   

10.
The identification of early inflammatory events after transplant in solid tissue organ grafts that may direct T cell recruitment and promote acute allograft rejection remain largely unknown. To better understand temporal aspects of early inflammatory events in vascularized organ grafts, we tested the intragraft expression of four different chemokines in heterotopically transplanted A/J (H-2(a)) and syngeneic heart grafts in C57BL/6 (H-2(b)) recipient mice from 1.5 to 48 h after transplant. Similar temporal expression patterns and equivalent levels of chemokine expression were observed in both syngeneic and allogeneic cardiac allografts during this time period. Expression of the neutrophil chemoattractant growth-related oncogene alpha (KC) was observed first and reached peak levels by 6 h after transplant and was followed by the monocyte/macrophage chemoattractant protein-1 (JE) and then macrophage inflammatory proteins 1beta and 1alpha. Administration of rabbit KC antiserum to allograft recipients within 30 min of cardiac transplantation attenuated downstream events including intra-allograft expression of the T cell chemoattractants IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma, cellular infiltration into the allograft, and graft rejection. Similarly, depletion of recipient neutrophils at the time of transplantation significantly extended allograft survival from day 8 to 10 in control-treated recipients up to day 21 after transplant. These results indicate the induction of highly organized cascades of neutrophil and macrophage chemoattractants in cardiac grafts and support the proposal that early inflammatory events are required for optimal recruitment of T cells into allografts during the progression of acute rejection of cardiac allografts.  相似文献   

11.
Although it is widely accepted that there is a hierarchy in the susceptibility of different allografts to rejection, the mechanisms responsible are unknown. We show that the increased susceptibility of H-2K(b+) skin and islet allografts to rejection is not based on their ability to activate more H-2K(b)-specific T cells in vivo; heart allografts stimulate the activation and proliferation of many more H-2K(b)-specific T cells than either skin or islet allografts. Rejection of all three types of graft generate memory cells by 25 days posttransplant. These data provide evidence that neither tissue-specific Ags nor, surprisingly, the number of APCs carried in the graft dictate their susceptibility to T cell-mediated rejection and suggest that the graft microenvironment and size may play a more important role in determining the susceptibility of an allograft to rejection and resistance to tolerance induction.  相似文献   

12.
The cellular basis of the transplantation tolerance in a model system of BALB/c (Mls-1b) mice rendered cyclophosphamide (CP)-induced tolerant to DBA/2 (Mls-1a) skin allograft was investigated by assessing V beta 6+ T cells. From our results, three major mechanisms that are essential to the CP-induced skin allograft tolerance were sequentially elucidated. The first mechanism was destruction of donor-Ag-stimulated T cells in the periphery by CP treatment. The second mechanism was intrathymic clonal deletion of donor-reactive T cells, such as V beta 6+ T cells, correlating strongly with intrathymic mixed chimerism. The clonal deletion, however, was not always essential for the maintenance of the skin allografts, because DBA/2 skin survived even after the clonal deletion terminated and V beta 6+ T cells reappeared in the periphery of the recipient BALB/c mice. The third mechanism was generation of tolerogen-specific suppressor T cells, especially in the late stage of the tolerance. In contrast, the clonal anergy that is evidenced by the specific suppression of mixed lymphocyte reaction in the recipient BALB/c mice after injecting with DBA/2 spleen cells alone was not considered as a significant mechanism in prolonging skin allograft survival because such anergic mice showed accelerated rejection of the skin allografts. These results may suggest practical hierarchy of the mechanisms of CP-induced allograft tolerance.  相似文献   

13.
Costimulation blockade protocols are effective in prolonging allograft survival in animal models and are entering clinical trials, but how environmental perturbants affect graft survival remains largely unstudied. We used a costimulation blockade protocol consisting of a donor-specific transfusion and anti-CD154 mAb to address this question. We observed that lymphocytic choriomeningitis virus infection at the time of donor-specific transfusion and anti-CD154 mAb shortens allograft survival. Lymphocytic choriomeningitis virus 1) activates innate immunity, 2) induces allo-cross-reactive T cells, and 3) generates virus-specific responses, all of which may adversely affect allograft survival. To investigate the role of innate immunity, mice given costimulation blockade and skin allografts were coinjected with TLR2 (Pam3Cys), TLR3 (polyinosinic:polycytidylic acid), TLR4 (LPS), or TLR9 (CpG) agonists. Costimulation blockade prolonged skin allograft survival that was shortened after coinjection by TLR agonists. To investigate underlying mechanisms, we used "synchimeric" mice which circulate trace populations of anti-H2b transgenic alloreactive CD8+ T cells. In synchimeric mice treated with costimulation blockade, coadministration of all four TLR agonists prevented deletion of alloreactive CD8+ T cells and shortened skin allograft survival. These alloreactive CD8+ T cells 1) expressed the proliferation marker Ki-67, 2) up-regulated CD44, and 3) failed to undergo apoptosis. B6.TNFR2-/- and B6.IL-12R-/- mice treated with costimulation blockade plus LPS also exhibited short skin allograft survival whereas similarly treated B6.CD8alpha-/- and TLR4-/- mice exhibited prolonged allograft survival. We conclude that TLR signaling abrogates the effects of costimulation blockade by preventing alloreactive CD8+ T cell apoptosis through a mechanism not dependent on TNFR2 or IL-12R signaling.  相似文献   

14.
We have previously reported the sequential mechanisms of cyclophosphamide (CP)-induced tolerance. Permanent acceptance of donor skin graft is readily induced in the MHC-matched and minor Ag-mismatched recipients after treatment with donor spleen cells and CP. In the present study, we have elucidated the roles of NKT cells in CP-induced skin allograft tolerance. BALB/c AnNCrj (H-2(d), Lyt-1.2, and Mls-1(b)) wild-type (WT) mice or Valpha14 NKT knockout (KO) (BALB/c) mice were used as recipients, and DBA/2 NCrj (H-2(d), Lyt-1.1, and Mls-1(a)) mice were used as donors. Recipient mice were primed with 1 x 10(8) donor SC i.v. on day 0, followed by 200 mg/kg CP i.p. on day 2. Donor mixed chimerism and permanent acceptance of donor skin allografts were observed in the WT recipients. However, donor skin allografts were rejected in NKT KO recipient mice. In addition, the donor reactive Vbeta6(+) T cells were observed in the thymus of a NKT KO recipient. Reconstruction of NKT cells from WT mice restored the acceptance of donor skin allografts. In addition, donor grafts were partially accepted in the thymectomized NKT KO recipient mice. Furthermore, the tolerogen-specific suppressor cell was observed in thymectomized NKT KO recipient mice, suggesting the generation of regulatory T cells in the absence of NTK cells. Our results suggest that NKT cells are essential for CP-induced tolerance and may have a role in the establishment of mixed chimerism, resulting in clonal deletion of donor-reactive T cells in the recipient thymus.  相似文献   

15.
Combined CXCR3/CCR5 blockade attenuates acute and chronic rejection   总被引:1,自引:0,他引:1  
Chemokine-chemokine receptor interactions orchestrate mononuclear cells recruitment to the allograft, leading to acute and chronic rejection. Despite biologic redundancy, several experimental studies have demonstrated the importance of CXCR3 and CCR5 in acute rejection of allografts. In these studies, deficiency or blockade of CXCR3 or CCR5 led to prolongation of allograft survival, yet allografts were ultimately lost to acute rejection. Given the above findings and the specificity of mononuclear cells bearing CXCR3 and CCR5, we hypothesized that combined blockade of CXCR3 and CCR5 will lead to indefinite (>100 days) graft survival in a full MHC-mismatched murine cardiac allograft model. The donor hearts in the control group were rejected in 6 +/- 1 days after transplantation. Combined blockade of CXCR3 and CCR5 prolonged allograft survival >15-fold vs the control group; all allografts survived for >100 days. More importantly, the donor hearts did not display any intimal lesions characteristic of chronic rejection. Further analysis of the donor hearts in the CXCR3/CCR5 blockade group demonstrated graft infiltration with CD4(+)CD25(+) T cells expressing the Foxp3 gene. Depletion of CD25(+) cells in the combined CXCR3 and CCR5 blockade group resulted in acute rejection of the allografts in 22 +/- 2 days. Combined CXCR3 and CCR5 blockade also reduced alloantigen-specific T lymphocyte proliferation. Combined CXCR3 and CCR5 blockade is effective in preventing acute and chronic rejection in a robust murine model. This effect is mediated, in part, by CD25(+) regulatory T cell recruitment and control of T lymphocyte proliferation.  相似文献   

16.
Macrophages (Mphis), but not T cells, infiltrating into the rejection site of either i.p. allografted Meth A (H-2d) fibrosarcoma cells in C57BL/6 (B6) (H-2b) mice or BALB/c (H-2d) skin onto B6 mice are cytotoxic against allografts with H-2d specificity. To determine the mechanisms of specific killing of allografts by allograft-induced Mphi (AIM), we raised approximately 5,000 rat monoclonal antibodies (mAbs) against AIM and selected three of them (R1-73, R2-40 and R1-34), each of which inhibited cytotoxic activity against allografts in a dose-dependent manner. The antigens recognized by R1-73, R2-40 and R1-34 mAbs were defined by immunoprecipitation and Western blot analyses as CD11a, CD18 and CD11b, respectively; and the allografts expressed CD54, a ligand of CD11a or CD11b, suggesting leukocyte integrin-dependent killing. Although Ab-dependent cellular cytotoxicity has been recognized as a mechanism of specific killing by Mphis, the infiltration of AIM into the rejection site of allografts far (approximately 6 days) preceded the appearance of serum IgG Ab specific for the allograft. AIM exhibiting full cytotoxic activity against allografts was also induced in the transplantation site of Fcgamma receptor knockout [(B6x129) F1] mice as well as B10.D2 (H-2 compatible with allograft) and B6-xid (X-linked immunodeficiency with B cell-specific defect) strains of mice. In the latter two strains of mice, the levels of serum IgG Ab to the allograft were negligible. Moreover, the cytotoxic activity of AIM against allografts was not affected by pretreatment of the cells with anti-mouse IgG serum, suggesting Ab-independent cytotoxicity.  相似文献   

17.
We determined the role of cytokines in regulating the pattern of rejection and recipient susceptibility to cyclosporine (CsA) in a mouse cardiac allograft model. Hearts from C3H mice transplanted into untreated BALB/c (Th2-dominant) and C57BL/6 (Th1-dominant) mice showed different patterns of rejection. C3H allografts in BALB/c mice showed typical acute vascular rejection (AVR) with strong intragraft deposition and high serum levels of anti-donor IgG with predominant IgG1, while C3H allografts in C57BL/6 mice showed typical acute cellular rejection (ACR) with massive intragraft infiltration of CD4(+) and CD8(+) lymphocytes and low serum levels of anti-donor IgG with predominant IgG2a. Elevated intragraft mRNA expression of IL-2, IFN-gamma, and IL-12 mRNA was present in C57BL/6 recipients, whereas allografts in BALB/c mice displayed increased IL-4 and IL-10 mRNA levels. CsA therapy completely inhibited ACR and induced indefinite allograft survival in C57BL/6 recipients, while the same therapy failed to prevent AVR, and only marginally prolonged graft survival in BALB/c recipients. In contrast, rapamycin blocked AVR, achieving indefinite survival in BALB/c recipients, but was less effective at preventing ACR in C57BL/6 recipients. The disruption of the IL-12 or IFN-gamma genes in C57BL/6 mice shifted ACR to AVR, and resulted in concomitant recipient resistance to CsA therapy. Conversely, disruption of IL-4 gene in BALB/c mice markedly attenuated AVR and significantly prolonged allograft survival. These data suggest that the distinct cytokine profiles expressed by different mouse strains play an essential role in regulating the pattern of rejection and outcome of CsA/rapamycin therapy.  相似文献   

18.
The effect of blocking the CD28/B7 costimulatory pathway on intestinal allograft rejection was examined in mice. Murine CTLA4Ig failed to prevent the rejection of allografts transplanted into wild-type or CD4 knockout (KO) mice but did inhibit allograft rejection by CD8 KO recipients. This effect was associated with decreased intragraft mRNA for IFN-gamma and TNF-alpha and increased mRNA for IL-4 and IL-5. This altered pattern of cytokine production was not observed in allografts from murine CTLA4Ig-treated CD4 KO mice. These data demonstrate that blockade of the CD28/B7 pathway has different effects on intestinal allograft rejection mediated by CD4+ and CD8+ T cells and suggest that these T cell subsets have different costimulatory requirements in vivo. The results also suggest that the inhibition of CD4+ T cell-mediated allograft rejection by CTLA4Ig may be related to down-regulation of Th1 cytokines and/or up-regulation of Th2 cytokines.  相似文献   

19.
Critical role of OX40 in CD28 and CD154-independent rejection   总被引:20,自引:0,他引:20  
Blocking both CD28 and CD154 costimulatory pathways can induce transplant tolerance in some, but not all, transplant models. Under stringent conditions, however, this protocol often completely fails to block allograft rejection. The precise nature of such CD28/CD154 blockade-resistant rejection is largely unknown. In the present study we developed a new model in which both CD28 and CD154, two conventional T cell costimulatory molecules, are genetically knocked out (i.e., CD28/CD154 double-knockout (DKO) mice) and used this model to examine the role of novel costimulatory molecule-inducible costimulator (ICOS), OX40, 4-1BB, and CD27 in mediating CD28/CD154-independent rejection. We found that CD28/CD154 DKO mice vigorously rejected fully MHC-mismatched DBA/2 skin allografts (mean survival time, 12 days; n = 6) compared with the wild-type controls (mean survival time, 8 days; n = 7). OX40 costimulation is critically important in skin allograft rejection in this model, as blocking the OX40/OX40 ligand pathway, but not the ICOS/ICOS ligand, 4-1BB/4-1BBL, or CD27/CD70 pathway, markedly prolonged skin allograft survival in CD28/CD154 DKO mice. The critical role of OX40 costimulation in CD28/CD154-independent rejection is further confirmed in wild-type C57BL/6 mice, as blocking the OX40/OX40 ligand pathway in combination with CD28/CD154 blockade induced long term skin allograft survival (>100 days; n = 5). Our study revealed a key cellular mechanism of rejection and identified OX40 as a critical alternative costimulatory molecule in CD28/CD154-independent rejection.  相似文献   

20.
Immune responses are suppressed in immunologically privileged sites, which may provide a unique opportunity to prolong allograft survival. However, it is unknown whether testicular immune privilege promotes transplantation tolerance. Mechanisms underlying immune privilege are also not well understood. Here we found that islet transplantation in the testis, an immunologically privileged site, generates much less memory CD8(+) T cells but induces more Ag-specific CD4(+)CD25(+) regulatory T cells than in a conventional site. These CD4(+)CD25(+) cells exhibited the suppression of alloimmune responses in vivo and in vitro. Despite the immune regulation, intratesticular islet allografts all were rejected within 42 days after transplantation although they survived longer than renal subcapsular islet allografts. However, blocking CD40/CD40L costimulation induced the tolerance of intratesticular, but not renal subcapsular, islet allografts. Tolerance to intratesticular islet allografts spread to skin allografts in the non-privileged sites. Either transfer of memory CD8(+) T cells or deletion of CD25(+) T cells in vivo broke islet allograft tolerance. Thus, transplantation tolerance requires both costimulatory blockade, which suppresses acute allograft rejection, and a favorable balance between memory and regulatory T cells that could favorably prevent late allograft failure. These findings reveal novel mechanisms of immune privilege and provide direct evidence that testicular immune privilege fosters the induction of transplantation tolerance to allografts in both immunologically privileged and non-privileged sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号