首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We used the double whole-cell voltage-clamp technique on ventricle cell pairs isolated from 7-day chick heart to measure the conductance of their gap junctions (G j) and junctional channels ( j) with a steady-state voltage difference (V j) applied across the junction. Currents were recorded from single gap junction channels (i j) as symmetrical rectangular signals of equal size and opposite sign in the two cells, and j was measured from i j/V j. We observed channel openings at six reproducible conductance levels with means of 42.6, 80.7, 119.6, 157.7, 200.4 and 240.3 pS. More than half of all openings were to the 80-and 160-pS conductance levels. The probability that a high conductance event (e.g., 160 or 240 pS) results from the random simultaneous opening of several 40-pS channels is small, based on their frequency of occurrence and on the prevalence of shifts between small and large conductance states with no intervening 40-pS steps. Our results are consistent with three models of embryonic cardiac gap junction channel configuration: a homogeneous population of 40-pS channels that can open cooperatively in groups of up to six; a single population of large channels with a maximal conductance near 240 pS and five smaller substates; or several different channel types, each with its own conductance. G j was determined from the junctional current (I j) elicited by rectangular pulses of applied transjunctional voltage as I j/V j. It was highest near 0 V j and was progressively reduced by application of V j between 20 and 80 mV or –20 and –80 mV. In response to increases in V j, G j decayed in a voltage-and timedependent fashion. After a 6-sec holding period at 0 V j, the initial conductance (G init) measured immediately after the onset of an 80-mV step in V j was nearly the same as that measured by a 10-mV prepulse. However, during 6-sec pulses of V j>±20 mV, G j declined over several seconds from G init to a steady-state value (G ss). At potentials greater than ±20 mV the current decay could be fit with biexponential curves with the slow decay time constant ( 2) 5–20 times longer than 1. For the response to a step to 80 mV V j, for example, 1=127 msec and 2=2.6 sec. The rate of current decay in response to smaller positive or negative steps in V j was slower, the magnitude of the decline was smaller, and the ratio 2/ 1 decreased. The relationship between G init and V j was approximately linear between 0 and 80 mV or –80 mV. whereas the relationship between G ss and V j was nonlinear beyond ±20 mV. Upon returning to 0 V j, G j recovered with a biexponential time course, reaching its maximal value after several seconds; recovery time constants after a step in V j from 80 to 0 mV were 225 msec and 1.9 sec. In the resting state, at low junctional voltage, high conductance channel activity (160–240 pS) is favored. Voltage-dependent decline of G j results in part from a shift from high to lower conductance states.We thank Ms. B.J. Duke for technical assistance and for preparation of the cell cultures and Drs. L.J. DeFelice and D. Eaton for stimulating and helpful discussions of the results.  相似文献   

2.
3.
In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. In a recent study with the use of in vivo and in vitro models of cortical ischemia in mice, we have demonstrated that the ischemic increase in neuronal gap junction coupling is regulated by glutamate via group II metabotropic glutamate receptors (mGluR). Specifically, we found that activation of group II mGluRs increases background levels of neuronal gap junction coupling and expression of connexin 36 (Cx36; neuronal gap junction protein), whereas inactivation of group II mGluRs prevents the ischemia-mediated increases in the coupling and Cx36 expression. Using the analysis of neuronal death, we also established that inactivation of group II mGluRs or genetic elimination of Cx36 both dramatically reduce ischemic neuronal death in vitro and in vivo. Similar results were obtained using in vitro models of TBI and epilepsy. Our study demonstrated that mechanisms for the injury-mediated increase in neuronal gap junction coupling are part of the mechanisms for glutamate-dependent neuronal death.  相似文献   

4.
In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. In a recent study with the use of in vivo and in vitro models of cortical ischemia in mice, we have demonstrated that the ischemic increase in neuronal gap junction coupling is regulated by glutamate via group II metabotropic glutamate receptors (mGluR). Specifically, we found that activation of group II mGluRs increases background levels of neuronal gap junction coupling and expression of connexin 36 (Cx36; neuronal gap junction protein), whereas inactivation of group II mGluRs prevents the ischemia-mediated increases in the coupling and Cx36 expression. Using the analysis of neuronal death, we also established that inactivation of group II mGluRs or genetic elimination of Cx36 both dramatically reduce ischemic neuronal death in vitro and in vivo. Similar results were obtained using in vitro models of TBI and epilepsy. Our study demonstrated that mechanisms for the injury-mediated increase in neuronal gap junction coupling are part of the mechanisms for glutamate-dependent neuronal death.  相似文献   

5.
Crustecdysone, the hormone responsible for onset and regulation of the molt cycle in Crustacea, causes an increase in ionic coupling of cells of the hepatopancreas concomitant with the events of the molt. Hepatopancreatic tissue incubated for up to 4 hr in modified Eagle Basal Medium containing crustecdysone, exhibited an approximate 29% decrease in intercellular resistance as compared with tissue incubated in control medium. This represents a 29% increase in ionic coupling between hepatopancreatocytes following treatment with crustecdysone. Examination of platinum replicas of freeze-fractured, crustecdysone-treated hepatocyte plasma membrane revealed that most of the gap junction plaques were round with tightly packed intramembrane particles; a condition indicative of highly coupled cells. Similar preparations of control plasmalemmae demonstrated many gap junction plaques which were round or irregular in shape with very loosely packed particles and were indicative of uncoupled junctions. Results of this study are identical to those from a previous investigation of the electrophysiology and freeze-fracture morphology of hepatopancreatocytes during the molt cycle (McVicar and Shivers, 1984), and are thus presumed to reflect a crustecdysone-controlled increase in cell communications in vivo.  相似文献   

6.
Summary This paper reports the inhibitory effects of calmidazolium (CDZ), a calmodulin inhibitor, on electrical uncoupling by CO2. Membrane potential and coupling ratio (V 2/V1) are measured in two neighboring cells ofXenopus embryos (16 to 64 cell stage) for periods as long as 5.5 hr. Upon exposure to 100% CO2, control cells consistently uncouple even if the CO2 treatments are repeated every 15 min for 2.5 hr. CDZ (5×10–8–1×10–7 m) strongly inhibits uncoupling. The inhibition starts after 30, 50 and 60 min of treatment with 1×10–7, 7×10–8 and 5×10–8 m CDZ, respectively, is concentration-dependent and partially reversible. In the absence of CO2, CDZ also improves electrical coupling. CDZ has no significant effect on membrane potential and nonjunctional membrane resistance. These data suggest that calmodulin or a calmodulin-like protein participates in the uncoupling mechanism.  相似文献   

7.
目的:探讨缝隙连接(GJ)是否参与同型半胱氨酸(Hcy)介导的自发性高血压(SHR)大鼠血管平滑肌细胞(VSMCs)增殖及可能的分子机制。方法:原代培养SHR VSMCs,细胞分四组:①对照组,②Hcy组,③缝隙连接阻断剂(18α-GA)组和④Hcy+18α-GA组。MTT法及流式细胞仪检测细胞的增殖活性,免疫荧光技术观察细胞中Cx43、Cx40蛋白表达及定位,Western blot法检测细胞中Cx43、Cx40蛋白表达,染料示踪分子传递法(划痕标记染料传输法)检测细胞的缝隙连接功能。结果:①与对照组相比,Hcy组MTT法测得A值及细胞周期测得S值增高(P0.05),18α-GA组降低(P0.05);与Hcy组比,TGFβ-1+18α-GA组A值及S值均降低(P0.05)。②免疫荧光技术检测细胞中Cx43、Cx40蛋白表达呈阳性,两者共定位于胞浆。③与对照组相比,Hcy组Cx43、Cx40蛋白表达增强(P0.05),18α-GA组Cx43、Cx40表达均减弱(P0.05);与Hcy组比,Hcy+18α-GA组Cx43、Cx40表达均减弱(P0.05)。④与对照组相比,Hcy组缝隙连接功能明显增强(P0.05),18α-GA组缝隙连接功能明显减弱(P0.05),与Hcy组比,Hcy+18α-GA组缝隙连接功能显著降低(P0.05)。结论:Hcy通过上调SHR VSMCs Cx43和Cx40的蛋白表达,引起缝隙连接通讯功能的增强,促进了SHR VSMCs增殖。  相似文献   

8.
Summary Prompted by our observation that a reduction in junctional permeance is one of the earlier events in the process of neoplastic transformation of a cell line by Rous sarcoma virus, we analyzed the gap junctions, from these cells to determine if the basis of the reduction is a loss of junctional channels. The cells (normal rat kidney, or NRK) are infected with a temperature-sensitive mutant of Rous sarcoma virus, allowing one easily to manipulate the cells into and out of the transformed state, and hence also to manipulate the junctional permeance. Using freeze-fracture electron microscopy, we found that the number and size of the junctions did not change in parallel with the permeance changes we had previously characterized. There is, however, a significant rearrangement of the junctional particles to a more random configuration when the cells are transformed and a reversal to the more ordered pattern when the cells are shifted back to the normal phenotype. These changes do parallel the changes in junctional permeance. We conclude that the permeance of existing junctional channels is modified and that the change in permeance may involve a change in the interaction of the junctional channels with each other and/or the surrounding lipid domain.  相似文献   

9.
The importance of connexins (Cxs) in the cochlear functions has been indicated by the finding that mutations in connexin genes cause a large proportion of sensorineural deafness cases. However, functional roles of connexins in the cochlea are still unclear. In this study, we compared the relative expression levels of 16 different subtypes of mouse connexins in the cochlea. cDNA macroarray hybridizations identified four most prominently expressed connexins (listed in descending order): Cxs 26, 29, 30, and 43. Two of these connexins (Cx26 and Cx30), both belonging to the beta-group, were investigated for their molecular assemblies in the cochlea. Co-immunostaining showed expressions of Cxs 26 and 30 in the same gap junction plaques and their co-assembly was confirmed by co-immunoprecipitation of proteins extracted from the cochlear tissues. The heterologous molecular assembly of connexins is expected to produce gap junctions with biophysical characteristics appropriate for maintaining ionic homeostasis in the cochlea.  相似文献   

10.
Summary Particles and pits of freeze-fractured gap junctions are considered as complementary structures despite the frequent observations of more regular and closer spacings of pits, ascribed to plastic deformation of particle arrays. Recently, however, the noncomplementarity of pits and particles in Purkinje fibers has been reported. To ascertain the relationship between both structures, gap junctions from fixed, cryoprotected liver and myocardium were investigated using spacing and density measurements and complementary replicas.In hepatocyte gap junctions, the center-to-center distances (mean±sd) among pits, 9.57±1.49 nm, and particles, 9.70±1.77 nm, are not significantly different. Density determinations yielded a slightly higher value for the pits, (11,510±830)/m2, than for the particles, (11,230±950)/m2. In the myocardium, the spacing of the regularly arrayed pits, 9.55±1.33 nm barely exceeds the value of 9.44±1.62 nm for the particles, which show some clustering. However, the packing density for the pits, (10,090±740)/m2, appears a little higher than that of the particles (9,890±920)/m2. As density and spacing measurements provided no decisive answers, the positions of individual pits and particles of complementary junctional faces were recorded on transparent sheets and compared. In this fashion, a one-to-one correspondence between particles and pits could be established, while small discrepancies may be attributed to plastic deformation. Moreover, the collinearity of pits and particles may be suggested by the observation of a platinum grain in the center of many pits.  相似文献   

11.
Polyamines cause inward rectification of (Kir) K+ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to and including the entrance to the selectivity filter, can confer strong rectification. As these negative charges are moved higher (toward the selectivity filter), or lower (toward the cytoplasm), they preferentially enhance the potency of block by shorter, or longer, diamines, respectively. MTSEA+ modification of engineered cysteines in the inner cavity reduces rectification, but modification below the inner cavity slows spermine entry and exit, without changing steady-state rectification. The data provide a coherent explanation of classical strong rectification as the result of polyamine block in the inner cavity and selectivity filter.  相似文献   

12.
13.
Abstract

q-stimulation reduces intercellular coupling within 10 min via a decrease in the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2), but the mechanism is unknown. Here we show that uncoupling in rat cardiomyocytes after stimulation of α-adrenergic Gαq-coupled receptors with norepinephrine is prevented by proteasomal and lysosomal inhibitors, suggesting that internalization and possibly degradation of connexin43 (Cx43) is involved. Uncoupling was accompanied by increased Triton X-100 solubility of Cx43, which is considered a measure of the non-junctional pool of Cx43. However, inhibition of the proteasome and lysosome further increased solubility while preserving coupling, suggesting that communicating gap junctions can be part of the soluble fraction. Ubiquitination of Cx43 was also increased, and Cx43 co-immunoprecipitated with the ubiquitin ligase Nedd4. Conclusions: Norepinephrine increases ubiquitination of Cx43 in cardiomyocytes, possibly via Nedd4. We suggest that Cx43 is subsequently internalized, which is preceded by acquired solubility in Triton X-100, which does not lead to uncoupling per se.  相似文献   

14.
Short term (15 min) effects of activators of protein kinase A (PKA), PKC and PKG on cardiac macroscopic (gj) and single channel (j) gap junctional conductances were studied in pairs of neonatal rat cardiomyocytes. Under dual whole-cell voltage-clamp, PKC activation by 100 nM TPA increased gj by 16 ± 2% (mean ± S.E.M, n=9), 1.5 mM of the PKG activator 8-bromo-cGMP (8Br-cGMP) decreased gj by 26 ± 2% (n=4), whereas 1.5 mM of the PKA activator 8Br-cAMP did not affect gj (1 ± 5%, n=11). Single cardiac gap junction channel events, resolved in the presence of heptanol, indicated two j sizes of 20 pS and 40–45 pS. Under control conditions, the larger events were most frequently observed. Whereas 8Br-cAMP did not change this distribution, TPA or 8Br-cGMP shifted the j distribution to the lower sizes. Diffusion of 6-carboxyfluorescein (6-CF), a gap junction permeant tracer, from the injected cell to neighboring cells was studied on small clusters of neonatal rat cardiomyocytes. Under control conditions, 6-CF labeled 8.4 ± 0.4 cells (mean ± S.E.M, n=31). Whereas 8Br-cAMP did not change the extent of dye transfer (8.1 ± 0.5 cells, n=10), TPA restricted the diffusion of 6-CF to 2.2 ± 0.2 cells (n=30) and 8Br-cGMP to 3.5 ± 0.3 cells (n=10). This suggests that permeability and single channel conductance of Cx43 gap junction channels are parallel related. Altogether, these results point to the differential modulation of electrical and metabolic coupling of cardiac cells by various phosphorylating conditions.  相似文献   

15.
Summary Lens fibers are coupled by communicating junctions, clusters of cell-to-cell channels composed of a 28-kD intrinsic membrane protein (MIP26). Evidence suggests that these and other cell-to-cell channels may close as a result of protein conformational change induced by activated calmodulin. To test the validity of this hypothesis, we have measured the intrinsic fluorescence emission and far-ultraviolet circular dichroism of the isolated components MIP26, calmodulin, and the MIP26-calmodulin complex, both in the absence and presence of Ca++, an uncoupling agent. MIP26 shows no change in either, fluorescence emission (primarily tryptophan and a measure of aromatic constitutivity) or in its circular dichroism spectrum. Calmodulin exhibits a 32% increase in fluorescence emission intensity with constant emission wavelength, entirely tyrosine, and a 44% increase in -helicity, changes previously described. The MIP26-calmodulin complex, on the other hand, displays fluorescence emission and circular dichroism spectra which are slightly different from the sum of the two single components, but shows marked differences in both spectra upon Ca++ addition. This indicates a change in conformation in one or both of the two components. Spectral changes include a 5-nm blue-shift, a 50% increase in tyrosine fluorescene emission, a 25% decrease in tryptophan fluorescence emission, and a 5% increase in the -helicity of the complex. These changes also occur about an isosbestic point and are fully reversible. These data provide additional evidence that activated calmodulin may modulate gating of cell-to-cell channels by affecting channel protein.  相似文献   

16.
Of the gap junction proteins characterized to date, Cx26 is unique in that it is usually expressed in conjunction with other members of the family, typically Cx32 (liver [Nicholson et al., Nature 329:732–734, 1987], pancreas, kidney, and stomach [J.-T. Zhang, B.J. Nicholson, J. Cell Biol. 109:3391–3410, 1989]), or Cx43 (leptomeninges [D.C. Spray et al., Brain Res. 568:1–14, 1991] and pineal gland [J.C. Sáez et al., Brain Res. 568:265–275,1991]). We have used specific antisera both to investigate the distribution of Cx32 and Cx26 in isolated liver gap junctions, and empirically establish the topological model of Cx26 suggested by its sequence and analogy to other connexins. Antipeptide antisera were prepared to four of the five hydrophilic domains which flank the four putative transmembrane spanning regions of Cx26. Antibodies to N-terminal residues 1–17 (αCx26-N), to residues 101–119 in the putative cytoplasmic loop (αCx26-CL), and to C-terminal residues 210–226 (αCx26-C) were all specific for Cx26. An antibody to residues 166–185 between hydrophobic domains 3 and 4 of Cx32 had affinity for both Cx26 and Cx32 (αCx32/26-E2). The antigenic sites Cx26-N, -CL and -C were each demonstrated to be cytoplasmically disposed, although the latter was conformationally hidden prior to partial proteolysis. The antigenic site for αCx32/26-E2 was only accessible after exposure of the extracellular face by separation of the junctional membranes in 8 m urea, pH 12.3. This treatment also served to reveal the region between residues 45 and 66 to Asp-N protease. The topology thus demonstrated for Cx26 is consistent with that deduced for other connexins (i.e., Cx32 and Cx43). Comparison of immunogold decorated gap junctions reacted with antibodies specific to Cx26 (αCx26-N and -CL), or to Cx32 [αCx32-CL], indicates that these connexins do not aggregate in subdomains within a junction, at least within the resolution provided by the labeling density (one antibody per 15–22 connexons). Although the presence of both connexins within a single channel could not be distinguished, possible interactions between channels is discussed.  相似文献   

17.
Escherichia coli hemolysin forms cation selective, ion-permeable channels of large conductance in planar phospholipid bilayer membranes. The pore formation mechanism is voltage dependent resembling that of some colicins and of diphtheria toxin: pores open when negative voltages are applied and close with positive potentials. The pH dependence of this gating process suggests that it is mediated by a negative fixed charge present in the lumen of the pore. A simple physical model of how the channel opens and closes in response to the applied voltage is given.  相似文献   

18.
The spatio-temporal expression of gap junction connexins (Cx) was investigated and correlated with the progression of cell cycle control in regenerating soleus muscle of Wistar rats. Notexin caused a selective myonecrosis followed by the complete recapitulation of muscle differentiation in vivo, including the activation, commitment, proliferation, differentiation and fusion of myogenic cells. In regenerating skeletal muscle, only Cx43 protein, out of Cx-s 26, –32, –37, –40, –43 and –45, was detected in desmin positive cells. Early expression of Cx43 in the proliferating single myogenic progenitors was followed by a progressive upregulation in interacting myoblasts until syncytial fusion, and then by a rapid decline in multinucleate myotubes. The significant upregulation of Cx43 gap junctions in aligned myoblasts preceding fusion was accompanied by the widespread nuclear expression of cyclin-dependent kinase inhibitors p21waf1/Cip1 and p27kip1 and the complete loss of Ki67 protein. The synchronized exit of myoblasts from the cell cycle following extensive gap junction formation suggests a role for Cx43 channels in the regulation of cell cycle control. The potential of Cx43 channels to stimulate p21waf1/Cip1 and p27kip1 is known. In the muscle, proving the involvement of Cx43 in either a direct or a bystander cell cycle regulation requires functional investigations.  相似文献   

19.
Summary The major intrinsic protein (MIP26) of bovine lens membranes, purified by HPLC, was incorporated into liposomes and planar bilayers. Permeability of MIP26 channels was studied in liposomes by a spectrophotometric osmotic-swelling assay, and channel electrical properties were monitored in planar bilayers following liposome fusion. Particle formation in liposomes was determined by freeze fracture. MIP26 channels were permeable to KCl and sucrose. In planar bilayers, channel-conductance transitions were observed only after addition of liposomes to both chambers and with voltages greater than ±20 mV. Channel open probability decreased progressively as voltage increased, and an open probability of 50% was at 60–80 mV, indicating that the channels are voltage dependent. Histograms of single-channel current amplitudes at 80 mV showed a Gaussian distribution that peaked at 10 pA (120 pS), after subtraction of 1 pA baseline current. Frequency distributions of open and closed times at 80 mV were single exponential functions with time constants of 0.13 and 1.9 sec, respectively. Open time constants ranged from 0.1 to 0.3 sec, and closed time constants ranged from 1 to 7 sec. Cs+ did not decrease conductance, but reduced mean open time from 0.2 to 0.038 sec and mean closed time from 1.5 to 0.38 sec. The increase in channel flickering with Cs+ occurred in bursts. TEA affected neither conductance nor kinetics. Channel events were also observed in Na+ solutions (zero K+). These data indicate that MIP26 channels are not K+-selective channels. Channel characteristics such as: permeability to molecules larger than small ions, conductance greater than 100 pS, long open and closed time constants, etc., are similar to those of gap junction channels.  相似文献   

20.
Establishing recordable channels in membranes of oocytes formed by expressing exogenous complementary DNA (cDNA) or messenger RNA (mRNA) has contributed greatly to understanding the molecular mechanisms of channel functions. Here, we report the extension of this semi-physiological system for monitoring the channel activity of preassembled membrane proteins in single cell oocytes by injecting reconstituted proteoliposomes along with substrates or regulatory molecules. We build on the observation that SecA from various bacteria forms active protein-conducting channels with injection of proteoliposomes, protein precursors, and ATP–Mg2+. Such activity was enhanced by reconstituted SecYEG–SecDF•YajC liposome complexes that could be monitored easily and efficiently, providing correlation of in vitro and intact cell functionality. In addition, inserting reconstituted gap junction Cx26 liposomes into the oocytes allowed the demonstration of intracellular/extracellular Ca2+-regulated hemi-channel activities. The channel activities can be detected rapidly after injection, can be monitored for various effectors, and are dependent on specific exogenous lipid compositions. This simple and effective functional system with low endogenous channel activity should have broad applications for monitoring the specific channel activities of complex interactions of purified membrane proteins with their effectors and regulatory molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号