首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To map quantitative trait loci (QTL) for growth and carcass traits in a purebred Japanese Black cattle population, we conducted multiple QTL analyses using 15 paternal half-sib families comprising 7860 offspring. We identified 40 QTL with significant linkages at false discovery rates of less than 0.1, which included 12 for intramuscular fat deposition called marbling and 12 for cold carcass weight or body weight. The QTL each explained 2%–13% of the phenotypic variance. These QTL included many replications and shared hypothetical identical-by-descent (IBD) alleles. The QTL for CW on BTA14 was replicated in five families with significant linkages and in two families with a 1% chromosome-wise significance level. The seven sires shared a 1.1-Mb superior Q haplotype as a hypothetical IBD allele that corresponds to the critical region previously refined by linkage disequilibrium mapping. The QTL for marbling on BTA4 was replicated in two families with significant linkages. The QTL for marbling on BTA6, 7, 9, 10, 20, and 21 and the QTL for body weight on BTA6 were replicated with 1% and/or 5% chromosome-wise significance levels. There were shared IBD Q or q haplotypes in the marbling QTL on BTA4, 6, and 10. The allele substitution effect of these haplotypes ranged from 0.7 to 1.2, and an additive effect between the marbling QTL on BTA6 and 10 was observed in the family examined. The abundant and replicated QTL information will enhance the opportunities for positional cloning of causative genes for the quantitative traits and efficient breeding using marker-assisted selection. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

3.
4.
QTL mapping for growth and carcass traits was performed using a paternal half-sib family composed of 325 Japanese Black cattle offspring. Nine QTL were detected at the 1% chromosome-wise significance level at a false discovery rate of less than 0.1. These included two QTL for marbling on BTA 4 and 18, two QTL for carcass weight on BTA 14 and 24, two QTL for longissimus muscle area on BTA 1 and 4, two QTL for subcutaneous fat thickness on BTA 1 and 15 and one QTL for rib thickness on BTA 6. Although the marbling QTL on BTA 4 has been replicated with significant linkages in two Japanese Black cattle sires, the three Q (more marbling) haplotypes, each inherited maternally, were apparently different. To compare the three Q haplotypes in more detail, high-density microsatellite markers for the overlapping regions were developed within the 95% CIs (65 markers in 44–78 cM). A detailed haplotype comparison indicated that a small region (<3.7 Mb) around 46 cM was shared between the Qs of the two sires, whose dams were related. An association of this region with marbling was shown by a regression analysis using the local population, in which the two sires were produced and this was confirmed by an association study using a population collected throughout Japan. These results strongly suggest that the marbling QTL on BTA 4 is located in the 3.7-Mb region at around 46 cM.  相似文献   

5.
Pork quality is an economically important trait and one of the main selection criteria for breeding in the swine industry. In this genome-wide association study (GWAS), 455 pigs from a porcine Large White × Minzhu intercross population were genotyped using the Illumina PorcineSNP60K Beadchip, and phenotyped for intramuscular fat content (IMF), marbling, moisture, color L*, color a*, color b* and color score in the longissimus muscle (LM). Association tests between each trait and the SNPs were performed via the Genome Wide Rapid Association using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. From the Ensembl porcine database, SNP annotation was implemented using Sus scrofa Build 9. A total of 45 SNPs showed significant association with one or multiple meat quality traits. Of the 45 SNPs, 36 were located on SSC12. These significantly associated SNPs aligned to or were in close approximation to previously reported quantitative trait loci (QTL) and some were located within introns of previously reported candidate genes. Two haplotype blocks ASGA0100525-ASGA0055225-ALGA0067099-MARC0004712-DIAS0000861, and ASGA0085522-H3GA0056170 were detected in the significant region. The first block contained the genes MYH1, MYH2 and MYH4. A SNP (ASGA0094812) within an intron of the USP43 gene was significantly associated with five meat quality traits. The present results effectively narrowed down the associated regions compared to previous QTL studies and revealed haplotypes and candidate genes on SSC12 for meat quality traits in pigs.  相似文献   

6.
Refinement of previous QTL on porcine chromosome 12 for fatty-acid composition and a candidate gene association analysis were conducted using an Iberian × Landrace cross. The concentrations of ten fatty acids were assayed in backfat tissue from which four metabolic ratios were calculated for 403 F2 animals. Linkage analysis identified two significant QTL. The first QTL was associated with the average chain length ratio and the percentages of myristic, palmitic and gadoleic acids. The second QTL was associated with percentages of palmitoleic, stearic and vaccenic acids. Based upon its position on SSC12, fatty acid synthase was tested as a candidate gene for the first QTL and no significant effects were found. Similarly, gastric inhibitory polypeptide ( GIP ) and acetyl-coenzyme A carboxylase alpha ( ACACA ) were tested as candidate genes for the second QTL using three SNPs in GIP and 15 synonymous SNPs in ACACA cDNA sequences. Two missense SNPs in GIP showed significant effects with palmitoleic and stearic fatty-acid concentration. Highly significant associations were found for two SNPs in ACACA with stearic, palmitoleic and vaccenic fatty-acid concentrations. These associations could be due to linkage disequilibrium with the causal mutations.  相似文献   

7.
Genetic polymorphisms in vitamin D metabolism and signaling genes have been inconsistently associated with risk of breast cancer, though few studies have examined SNPs in vitamin D-related genes other than the vitamin D receptor (VDR) gene and particularly have not examined the association with the retinoid X receptor alpha (RXRA) gene which may be a key vitamin D pathway gene. We conducted a nested case-control study of 734 cases and 1435 individually matched controls from a population-based prospective cohort study, the Northern Sweden Mammary Screening Cohort. Tag and functional SNPs were genotyped for the VDR, cytochrome p450 24A1 (CYP24A1), and RXRA genes. We also genotyped specific SNPs in four other genes related to vitamin D metabolism and signaling (GC/VDBP, CYP2R1, DHCR7, and CYP27B1). SNPs in the CYP2R1, DHCR7, and VDBP gene regions that were associated with circulating 25(OH)D concentration in GWAS were also associated with plasma 25(OH)D in our study (p-trend <0.005). After taking into account the false discovery rate, these SNPs were not significantly associated with breast cancer risk, nor were any of the other SNPs or haplotypes in VDR, RXRA, and CYP24A1. We observed no statistically significant associations between polymorphisms or haplotypes in key vitamin D-related genes and risk of breast cancer. These results, combined with the observation in this cohort and most other prospective studies of no association of circulating 25(OH)D with breast cancer risk, do not support an association between vitamin D and breast cancer risk.  相似文献   

8.
ABSTRACT: BACKGROUND: The PRKAG3 gene encodes the gamma3 subunit of adenosine monophosphate activated protein kinase (AMPK), a protein that plays a key role in energy metabolism in skeletal muscle. Nonsynonymous single nucleotide polymorphisms (SNPs) in this gene such as I199V are associated with important pork quality traits. The objective of this study was to investigate the relationship between gene expression of the PRKAG3 gene, SNP variation in the PRKAG3 promoter and meat quality phenotypes in pork. RESULTS: PRKAG3 gene expression was found to correlate with a number of traits relating to glycolytic potential (GP) and intramuscular fat (IMF) in three phenotypically diverse F1 crosses comprising of 31 Large White, 23 Duroc and 32 Pietrain sire breeds. The majority of associations were observed in the Large White cross. There was a significant association between genotype at the g.-311A>G locus and PRKAG3 gene expression in the Large White cross. In the same population, ten novel SNPs were identified within a 1.3 kb region spanning the promoter and from this three major haplotypes were inferred. Two tagging SNPs (g.- 995A>G and g.-311A>G) characterised the haplotypes within the promoter region being studied. These two SNPs were subsequently genotyped in larger populations consisting of Large White (n = 98), Duroc (n = 99) and Pietrain (n = 98) purebreds. Four major haplotypes including promoter SNP's g.-995A>G and g.-311A>G and I199V were inferred. In the Large White breed, HAP1 was associated with IMF% in the M. longissmus thoracis et lumborum (LTL) and driploss%. HAP2 was associated with IMFL% GP-influenced traits pH at 24 hr in LTL (pHULT), pH at 45 min in LTL (pH45LT) and pH at 45 min in the M. semimembranosus muscle (pH45SM). HAP3 was associated with driploss%, pHULT pH45LT and b* Minolta. In the Duroc breed, associations were observed between HAP1 and Driploss% and pHUSM. No associations were observed with the remaining haplotypes (HAP2, HAP3 and HAP4) in the Duroc breed. The Pietrain breed was monomorphic in the promoter region. The I199V locus was associated with several GP-influenced traits across all three breeds and IMF% in the Large White and Pietrain breed. No significant difference in promoter function was observed for the three main promoter haplotypes when tested in vitro. CONCLUSION: Gene expression levels of the porcine PRKAG3 are associated with meat quality phenotypes relating to glycolytic potential and IMF% in the Large White breed, while SNP variation in the promoter region of the gene is associated with PRKAG3 gene expression and meat quality phenotypes.  相似文献   

9.
10.
The gene corticotropin releasing hormone (CRH) is mapped on bovine chromosome 14 (BTA14), where more than 30 fat-related quantitative trait loci (QTLs) have been reported in dairy and beef cattle. The gene product regulates secretion of adrenocorticotrophin hormone, the hypothalamic-pituitary-adrenal axis, and multiple hypothalamic functions; therefore, we hypothesized that CRH is a promising candidate gene for beef marbling score (BMS) and subcutaneous fat depth (SFD) in a Wagyu x Limousin F2 population. Two pairs of primers were designed and a total of 5 single nucleotide polymorphisms (SNPs) were identified: g.9657C>T, c.10718G>C, c.10841G>A, c.10893A>C, and c.10936G>C (AAFC03076794.1). Among the 4 cSNPs, c.10718G>C, c.10841G>A, and c.10936G>C are missense mutations leading to amino acid changes from arginine to proline, from serine to asparagine, and from aspartic acid to histidine, respectively. These 5 SNPs were genotyped on ~250 F2 progeny, but only 4 were selected as tagging SNPs for association analysis because no historical recombination was observed between c.10718G>C and c.10893A>C. Statistical analysis showed that g.9657C>T, c.10718G>C, and c.10936G>C and their haplotypes had significant effects on SFD, but only c.10936G>C was significantly associated with BMS. The SNP in the promoter (g.9657C>T) led to gain/loss of a CpG site and 4 potential regulatory binding sites. Different haplotypes among the 4 cSNPs significantly affected mRNA secondary structures but were not associated with phenotypes. Overall, our results provide further evidence that CRH is a promising candidate gene for a concordant QTL related to lipid metabolism in mammals.  相似文献   

11.
Thyroid hormones play an important role in regulating the metabolism and can affect the homeostasis of fat deposition. The gene encoding thyroglobulin (TG), producing the precursor for thyroid hormones, has been proposed as a positional and functional candidate gene for a QTL with an effect on fat deposition. In the present study, we identified 6 novel SNPs at the 3' flanking region of the TG gene. The SNP marker association analysis indicated that the SNP markers G133C, G156A, C220T and A506C were significantly associated with marbling score (P<0.05, N=271). Animals with the new homozygote genotype had higher marbling scores than those with the other genotypes. Besides, the linkage disequilibrium analysis indicated that these 4 SNPs were completely linked (r2 = 1). Results of this study suggest that the TG-gene-specific SNP may be a useful marker for meat quality traits in future marker-assisted selection programmes in beef cattle.  相似文献   

12.
A key question for the implementation of marker-assisted selection (MAS) using markers in linkage disequilibrium with quantitative trait loci (QTLs) is how many markers surrounding each QTL should be used to ensure the marker or marker haplotypes are in sufficient linkage disequilibrium (LD) with the QTL. In this paper we compare the accuracy of MAS using either single markers or marker haplotypes in an Angus cattle data set consisting of 9323 genome-wide single nucleotide polymorphisms (SNPs) genotyped in 379 Angus cattle. The extent of LD in the data set was such that the average marker-marker r2 was 0.2 at 200 kb. The accuracy of MAS increased as the number of markers in the haplotype surrounding the QTL increased, although only when the number of markers in the haplotype was 4 or greater did the accuracy exceed that achieved when the SNP in the highest LD with the QTL was used. A large number of phenotypic records (>1000) were required to accurately estimate the effects of the haplotypes.  相似文献   

13.
Although mutations in the oncoprotein murine double minute 2 (MDM2) are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2), which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1), which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP) SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (?1494?G?>?A; indel 40?bp; and ?182?C?>?G). Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309). Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40?bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.  相似文献   

14.
选取有代表性的10个南荻(Miscanthus lutarioriparius L.Liu ex Renvoize&S.L.Chen)野生居群,以种群转录组数据为基础,对种群局部适应性的关键因子进行研究。首先利用SNP构建推断单倍型,分析环境间和推断单倍型间的差异表达基因,并将这类基因分为4类:仅受环境显著影响的基因(E)、仅受单倍型显著影响的基因(G)、受环境和单倍型相互作用显著影响的基因(G&E)以及非显著影响的基因。分析结果显示:G&E和E基因集在种群局域适应中发挥重要作用,前者的基因表达更容易受其它因素的影响,而后者相对较为稳定;前者中显著富集核糖体途径相关功能基因,后者中显著富集蛋白质折叠相关功能基因。这两类功能基因均参与响应外界压力,推测这些基因的差异表达主要受环境以及基因型和生长环境相互作用的影响。  相似文献   

15.
16.
Extensive linkage disequilibrium among classical laboratory strains represents an obstacle in the high-resolution haplotype mapping of mouse quantitative trait loci (QTL). To determine the potential of wild-derived mouse strains for fine QTL mapping, we constructed a haplotype map of a 250-kb region of the t-complex on chromosome 17 containing the Hybrid sterility 1 (Hst1) gene. We resequenced 33 loci from up to 80 chromosomes of five mouse (sub)species. Trans-species single-nucleotide polymorphisms (SNPs) were rare between Mus m. musculus (Mmmu) and Mus m. domesticus (Mmd). The haplotypes in Mmmu and Mmd differed and therefore strains from these subspecies should not be combined for haplotype-associated mapping. The haplotypes of t-chromosomes differed from all non-t Mmmu and Mmd haplotypes. Half of the SNPs and SN indels but only one of seven longer rearrangements found in classical laboratory strains were useful for haplotype mapping in the wild-derived M. m. domesticus. The largest Mmd haplotype block contained three genes of a highly conserved synteny. The lengths of the haplotype blocks deduced from 36 domesticus chromosomes were in tens of kilobases, suggesting that the wild-derived Mmd strains are suitable for fine interval-specific mapping.  相似文献   

17.
To optimize the strategies for population-based pharmacogenetic studies, we extensively analyzed single-nucleotide polymorphisms (SNPs) and haplotypes in 199 drug-related genes, through use of 4,190 SNPs in 752 control subjects. Drug-related genes, like other genes, have a haplotype-block structure, and a few haplotype-tagging SNPs (htSNPs) could represent most of the major haplotypes constructed with common SNPs in a block. Because our data included 860 uncommon (frequency <0.1) SNPs with frequencies that were accurately estimated, we analyzed the relationship between haplotypes and uncommon SNPs within the blocks (549 SNPs). We inferred haplotype frequencies through use of the data from all htSNPs and one of the uncommon SNPs within a block and calculated four joint probabilities for the haplotypes. We show that, irrespective of the minor-allele frequency of an uncommon SNP, the majority (mean +/- SD frequency 0.943+/-0.117) of the minor alleles were assigned to a single haplotype tagged by htSNPs if the uncommon SNP was within the block. These results support the hypothesis that recombinations occur only infrequently within blocks. The proportion of a single haplotype tagged by htSNPs to which the minor alleles of an uncommon SNP were assigned was positively correlated with the minor-allele frequency when the frequency was <0.03 (P<.000001; n=233 [Spearman's rank correlation coefficient]). The results of simulation studies suggested that haplotype analysis using htSNPs may be useful in the detection of uncommon SNPs associated with phenotypes if the frequencies of the SNPs are higher in affected than in control populations, the SNPs are within the blocks, and the frequencies of the SNPs are >0.03.  相似文献   

18.

Background

To better understand the genetic determination of udder health, we performed a genome-wide association study (GWAS) on a population of 2354 German Holstein bulls for which daughter yield deviations (DYD) for somatic cell score (SCS) were available. For this study, we used genetic information of 44 576 informative single nucleotide polymorphisms (SNPs) and 11 725 inferred haplotype blocks.

Results

When accounting for the sub-structure of the analyzed population, 16 SNPs and 10 haplotypes in six genomic regions were significant at the Bonferroni threshold of P ≤ 1.14 × 10-6. The size of the identified regions ranged from 0.05 to 5.62 Mb. Genomic regions on chromosomes 5, 6, 18 and 19 coincided with known QTL affecting SCS, while additional genomic regions were found on chromosomes 13 and X. Of particular interest is the region on chromosome 6 between 85 and 88 Mb, where QTL for mastitis traits and significant SNPs for SCS in different Holstein populations coincide with our results. In all identified regions, except for the region on chromosome X, significant SNPs were present in significant haplotypes. The minor alleles of identified SNPs on chromosomes 18 and 19, and the major alleles of SNPs on chromosomes 6 and X were favorable for a lower SCS. Differences in somatic cell count (SCC) between alternative SNP alleles reached 14 000 cells/mL.

Conclusions

The results support the polygenic nature of the genetic determination of SCS, confirm the importance of previously reported QTL, and provide evidence for the segregation of additional QTL for SCS in Holstein cattle. The small size of the regions identified here will facilitate the search for causal genetic variations that affect gene functions.  相似文献   

19.
Causal mutations affecting quantitative trait variation can be good targets for marker-assisted selection for carcass traits in beef cattle. In this study, linkage and linkage disequilibrium analysis (LDLA) for four carcass traits was undertaken using 19 markers on bovine chromosome 14. The LDLA analysis detected quantitative trait loci (QTL) for carcass weight (CWT) and eye muscle area (EMA) at the same position at around 50?cM and surrounded by the markers FABP4SNP2774C>G and FABP4_??sat3237. The QTL for marbling (MAR) was identified at the midpoint of markers BMS4513 and RM137 in a 3.5-cM marker interval. The most likely position for a second QTL for CWT was found at the midpoint of tenth marker bracket (FABP4SNP2774C>G and FABP4_??sat3237). For this marker bracket, the total number of haplotypes was 34 with a most common frequency of 0.118. Effects of haplotypes on CWT varied from a ?5-kg deviation for haplotype 6 to +8?kg for haplotype 23. To determine which genes contribute to the QTL effect, gene expression analysis was performed in muscle for a wide range of phenotypes. The results demonstrate that two genes, LOC781182 (p?=?0.002) and TRPS1 (p?=?0.006) were upregulated with increasing CWT and EMA, whereas only LOC614744 (p?=?0.04) has a significant effect on intramuscular fat (IMF) content. Two genetic markers detected in FABP4 were the most likely QTL position in this QTL study, but FABP4 did not show a significant effect on both traits (CWT and EMA) in gene expression analysis. We conclude that three genes could be potential causal genes affecting carcass traits CWT, EMA, and IMF in Hanwoo.  相似文献   

20.
Genome-wide association studies (GWAS) may benefit from utilizing haplotype information for making marker-phenotype associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any advantage may depend on such factors as genetic architecture of traits, patterns of linkage disequilibrium in the study population, and marker density. The objective of this study was to explore the utility of haplotypes for GWAS in barley (Hordeum vulgare) to offer a first detailed look at this approach for identifying agronomically important genes in crops. To accomplish this, we used genotype and phenotype data from the Barley Coordinated Agricultural Project and constructed haplotypes using three different methods. Marker-trait associations were tested by the efficient mixed-model association algorithm (EMMA). When QTL were simulated using single SNPs dropped from the marker dataset, a simple sliding window performed as well or better than single SNPs or the more sophisticated methods of blocking SNPs into haplotypes. Moreover, the haplotype analyses performed better 1) when QTL were simulated as polymorphisms that arose subsequent to marker variants, and 2) in analysis of empirical heading date data. These results demonstrate that the information content of haplotypes is dependent on the particular mutational and recombinational history of the QTL and nearby markers. Analysis of the empirical data also confirmed our intuition that the distribution of QTL alleles in nature is often unlike the distribution of marker variants, and hence utilizing haplotype information could capture associations that would elude single SNPs. We recommend routine use of both single SNP and haplotype markers for GWAS to take advantage of the full information content of the genotype data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号