首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Since their initial discovery over a century ago, our knowledge of the functions of myoglobin and the mitochondrion has gradually evolved. The mitochondrion, once thought to be solely responsible for energy production, is now known to be an integral redox and apoptotic signal transducer within the cell. Likewise, myoglobin, traditionally thought of only as an oxygen store, has emerged as a physiological catalyst that can modulate reactive oxygen species levels, facilitate oxygen diffusion and scavenge or generate nitric oxide (NO) depending on oxygen tensions within the cell. By virtue of its unique ability to regulate O(2) and NO levels within the cell, myoglobin can modulate mitochondrial function in energy-demanding tissues such as the beating heart and exercising muscle. In this review, we present the conventional functions of myoglobin and mitochondria, and describe how these roles have been reassessed and advanced, particularly in the context of NO and nitrite signaling. We present the mechanisms by which mitochondria and myoglobin regulate one another within the cell through their interactions with NO and oxygen and discuss the implications of these interactions in terms of health and disease.  相似文献   

2.
Nitric oxide is a mediator of many disease states. Previous studies have demonstrated that ruthenium(III) polyaminocarboxylates can react with NO to form stable complexes reducing the levels of nitrite in the culture medium of stimulated RAW264 macrophages and reverse the NO-mediated hypotension in animal models of septic shock. It was necessary to confirm that these observations were due to NO scavenging and not inhibition of the NO metabolic pathway. Using RAW264 cells it was confirmed that [Ru(H(3)dtpa)(Cl)] (AMD6221) was neither acting at the level of iNOS induction, nor as an inhibitor of iNOS by measuring iNOS mRNA by RT-PCR and protein by Western blot and enzyme activity. Using HPLC, the nitrosyl adduct of reaction of AMD6221, [Ru(H(2)dtpa)NO], was identified in the medium of stimulated RAW264 cells co-incubated with AMD6221, concomitant with a stoichiometric reduction in nitrite/nitrate levels, thus confirming that the ruthenium(III) polyaminocarboxylates exert their pharmacological effect by scavenging NO.  相似文献   

3.
The mechanism for the reaction between nitric oxide (NO) and O2 bound to the heme iron of myoglobin (Mb), including the following isomerization to nitrate, has been investigated using hybrid density functional theory (B3LYP). Myoglobin working as a NO scavenger could be of importance, since NO reversibly inhibits the terminal enzyme in the respiration chain, cytochrome c oxidase. The concentration of NO in the cell will thus affect the respiration and thereby the synthesis of ATP. The calculations show that the reaction between NO and the heme-bound O2 gives a peroxynitrite intermediate whose O–O bond undergoes a homolytic cleavage, forming a NO2 radical and myoglobin in the oxo-ferryl state. The NO2 radical then recombines with the oxo-ferryl, forming heme-bound nitrate. Nine different models have been used in the present study to examine the effect on the reaction both by the presence and the protonation state of the distal His64, and by the surroundings of the proximal His93. The barriers going from the oxy-Mb and nitric oxide reactant to the peroxynitrite intermediate and further to the oxo-ferryl and NO2 radical are around 10 and 7 kcal/mol, respectively. Forming the product, nitrate bound to the heme iron has a barrier of less than ~7 kcal/mol. The overall reaction going from a free nitric oxide and oxy-Mb to the heme bound nitrate is exergonic by more than 30 kcal/mol.  相似文献   

4.
Hemoglobins modified for therapeutic use as either hemoglobin-based oxygen carriers or scavengers of nitric oxide are currently being evaluated in clinical trials. One such product, pyridoxalated hemoglobin polyoxyethylene conjugate (PHP), is a human-derived and chemically modified hemoglobin that has yielded promising results in Phase II clinical trials, and is entering a pivotal Phase III clinical trial for the treatment of shock associated with systemic inflammatory response syndrome (SIRS). Shock associated with SIRS is a NO-induced shock. PHP, a new mechanism-based therapy, has been demonstrated in clinical trials to have the expected hemodynamic activity of raising blood pressure and reducing catecholamine use, consistent with its mechanism of action as a NO scavenger. PHP is conjugated with polyoxyethylene, which results in a surface-decorated molecule with enhanced circulation time and stability as well as in attachment of soluble red blood cell enzymes, including catalase and superoxide dismutase. PHP thus contains an antioxidant profile similar to the intact red blood cell and is therefore resistant to both initial oxidative modification by oxidants such as hydrogen peroxide and subsequent ferrylhemoglobin formation. These studies suggest both that the redox activity of modified hemoglobins can be attenuated and that modified hemoglobins containing endogenous antioxidants, such as PHP, may have reduced pro-oxidant potential. These antioxidant properties, in addition to the NO-scavenging properties, may allow the use of PHP in other indications in which excess NO, superoxide, or hydrogen peroxide is involved, including ischemia-reperfusion injury and hemorrhagic shock.  相似文献   

5.
Bilirubin is the final product of heme metabolism. Until recently, bilirubin was considered as a mere by-product of heme degradation but, in the last 20 years, many papers have appeared in the literature demonstrating that this bile pigment is endowed with a strong antioxidant activity, being able to counteract the cellular damage elicited by reactive oxygen species in many in vitro and in vivo experimental systems. Interestingly, compelling evidence has shown that BR can serve as an endogenous scavenger of both nitric oxide and reactive nitrogen species, thus widening the protective role of bilirubin to other reactive species originating within the cellular milieu. The aim of this paper is to give an overview of the interaction between bilirubin and nitric oxide/reactive nitrogen species; furthermore, the possible pathophysiological and clinical relevance of this interaction will be discussed.  相似文献   

6.
Abstract

Bilirubin is the final product of heme metabolism. Until recently, bilirubin was considered as a mere by-product of heme degradation but, in the last 20 years, many papers have appeared in the literature demonstrating that this bile pigment is endowed with a strong antioxidant activity, being able to counteract the cellular damage elicited by reactive oxygen species in many in vitro and in vivo experimental systems. Interestingly, compelling evidence has shown that BR can serve as an endogenous scavenger of both nitric oxide and reactive nitrogen species, thus widening the protective role of bilirubin to other reactive species originating within the cellular milieu. The aim of this paper is to give an overview of the interaction between bilirubin and nitric oxide/reactive nitrogen species; furthermore, the possible pathophysiological and clinical relevance of this interaction will be discussed.  相似文献   

7.
Nitrification is a critical process for the balance of reduced and oxidized nitrogen pools in nature, linking mineralization to the nitrogen loss processes of denitrification and anammox. Recent studies indicate a significant contribution of ammonia‐oxidizing archaea (AOA) to nitrification. However, quantification of the relative contributions of AOA and ammonia‐oxidizing bacteria (AOB) to in situ ammonia oxidation remains challenging. We show here the production of nitric oxide (NO) by Nitrosopumilus maritimus SCM1. Activity of SCM1 was always associated with the release of NO with quasi‐steady state concentrations between 0.05 and 0.08 μM. NO production and metabolic activity were inhibited by the nitrogen free radical scavenger 2‐phenyl‐4,4,5,5,‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (PTIO). Comparison of marine and terrestrial AOB strains with SCM1 and the recently isolated marine AOA strain HCA1 demonstrated a differential sensitivity of AOB and AOA to PTIO and allylthiourea (ATU). Similar to the investigated AOA strains, bulk water column nitrification at coastal and open ocean sites with sub‐micromolar ammonia/ammonium concentrations was inhibited by PTIO and insensitive to ATU. These experiments support predictions from kinetic, molecular and biogeochemical studies, indicating that marine nitrification at low ammonia/ammonium concentrations is largely driven by archaea and suggest an important role of NO in the archaeal metabolism.  相似文献   

8.
Atherosclerosis is the primary cause of cardiovascular disease, and the risk for atherosclerosis is inversely proportional to circulating levels of high-density lipoprotein (HDL) cholesterol. However, the mechanisms by which HDL is atheroprotective are complex and not well understood. Here we show that HDL stimulates endothelial nitric oxide synthase (eNOS) in cultured endothelial cells. In contrast, eNOS is not activated by purified forms of the major HDL apolipoproteins ApoA-I and ApoA-II or by low-density lipoprotein. Heterologous expression experiments in Chinese hamster ovary cells reveal that scavenger receptor-BI (SR-BI) mediates the effects of HDL on the enzyme. HDL activation of eNOS is demonstrable in isolated endothelial-cell caveolae where SR-BI and eNOS are colocalized, and the response in isolated plasma membranes is blocked by antibodies to ApoA-I and SR-BI, but not by antibody to ApoA-II. HDL also enhances endothelium- and nitric-oxide-dependent relaxation in aortae from wild-type mice, but not in aortae from homozygous null SR-BI knockout mice. Thus, HDL activates eNOS via SR-BI through a process that requires ApoA-I binding. The resulting increase in nitric-oxide production might be critical to the atheroprotective properties of HDL and ApoA-I.  相似文献   

9.
Nitric oxide is a gaseous, short-living free radical which behaves as an important signaling molecule with pleiotropic capacities including vasodilatation, neurotransmission, and microbial and tumor cell killing, as well as in tissue damage and organ-specific autoimmune disorders. Here, a synthesized, dinuclear copper complex system in vitro obtained by the simple aza-phenolic ligand 2,6-bis[[bis-(2-aminoethyl)amino]methyl]phenol (L) and Cu(II) ion has been used. The stability constants of ligand L with Cu(II) ion were determined through potentiometric measurements in aqueous solution (37.1 +/- 0.1 degrees C, I = 0.15 M of NaCl) to mimic the biological medium. The measurements demonstrated that [Cu(2)H(-1)L(OH)](2+) (DCu) is the predominant species present in solution at pH 7.4. The molecular structure of the ligand in this species permits the cooperation of the two copper ions in assembling the substrate, thus the complex can be used as a receptor for small molecules such as NO. As a biological model, we chose the production of NO catalyzed by inducible nitric oxide synthase obtained from RAW 264.7 murine macrophage cell line stimulated with LPS, which enabled us to prove that NO is coordinated by the DCu complex, modifying its EPR spectra. The coordination of NO with DCu reduces the level of nitrite in the culture medium of stimulated RAW 264.7 macrophages without any inhibition in the expression of iNOS.  相似文献   

10.
Lim JM  Mei Y  Chen B  Godke RA  Hansel W 《Theriogenology》1999,51(5):941-949
Bovine IVF oocytes were cultured in modified bovine embryo culture medium (mBECM) supplemented with either a nitric oxide (NO) scavenger, hemoglobin (Hb, 1 microg/mL) and/or a NO synthesis inhibitor, L(omega)-nitro-L-arginine methyl ester (L-NAME, 1 or 1000 nM) in a cumulus-granulosa cell co-culture system. In Experiment 1, a total of 1,675 cumulus-oocytes complexes was collected for 7 mo and cultured to the blastocyst stage in mBECM with or without Hb after IVM and IVF. There were significant (P<0.0024) model effects of Hb addition and month of oocyte collection on embryo development. A significant (P<0.0023) monthly variation was detected in all developmental stages. However, addition of Hb to mBECM consistently enhanced embryo development to the blastocyst stage over all months. No statistical differences were found in the interaction between Hb addition and month except for the cleavage rate. Overall, a greater percentage of oocytes developed to the 8-cell (P<0.0459), 16-cell (P<0.001), morula (P<0.0013) and blastocyst (P<0.0024) stages after the addition of Hb. In Experiment 2, addition of L-NAME to mBECM supplemented with Hb did not further stimulate prehatched development. In conclusion, the promoting effect of Hb on in vitro development of embryos is highly repeatable over an extended period of time.  相似文献   

11.
12.
13.
As well as superoxide generated from neutrophils, nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) in macrophages plays an important role in inflammation. We previously showed that 6-formylpterin, a xanthine oxidase inhibitor, has a superoxide scavenging activity. In the present study, to elucidate other pharmacological activities of 6-formylpterin, we investigated the effects of 6-formylpterin on production of nitric oxide (NO) in the murine macrophage cell line RAW 264.7 stimulated by lipopolysaccharide (LPS) and interferon-gamma (INF-gamma). 6-Formylpterin suppressed the expression of iNOS, and it also inhibited the catalytic activity of iNOS, which collectively resulted in the inhibition of NO production in the stimulated macrophages. However, 6-formylpterin did not scavenge the released NO from an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). These results indicate that 6-formylpterin inhibits pathological NO generation from macrophages during inflammation, but that it does not disturb the physiological action of NO released from other sources.  相似文献   

14.
The mechanism of the nitric oxide reduction in a bacterial nitric oxide reductase (NOR) has been investigated in two model systems of the heme-b3-FeB active site using density functional theory (B3LYP). A model with an octahedral coordination of the non-heme FeB consisting of three histidines, one glutamate and one water molecule gave an energetically feasible reaction mechanism. A tetrahedral coordination of the non-heme iron, corresponding to the one of CuB in cytochrome oxidase, gave several very high barriers which makes this type of coordination unlikely. The first nitric oxide coordinates to heme b3 and is partly reduced to a more nitroxyl anion character, which activates it toward an attack from the second NO. The product in this reaction step is a hyponitrite dianion coordinating in between the two irons. Cleaving an NO bond in this intermediate forms an FeB (IV)O and nitrous oxide, and this is the rate determining step in the reaction mechanism. In the model with an octahedral coordination of FeB the intrinsic barrier of this step is 16.3 kcal/mol, which is in good agreement with the experimental value of 15.9 kcal/mol. However, the total barrier is 21.3 kcal/mol, mainly due to the endergonic reduction of heme b3 taken from experimental reduction potentials. After nitrous oxide has left the active site the ferrylic FeB will form a μ-oxo bridge to heme b3 in a reaction step exergonic by 45.3 kcal/mol. The formation of a quite stable μ-oxo bridge between heme b3 and FeB is in agreement with this intermediate being the experimentally observed resting state in oxidized NOR. The formation of a ferrylic non-heme FeB in the proposed reaction mechanism could be one reason for having an iron as the non-heme metal ion in NOR instead of a Cu as in cytochrome oxidase.  相似文献   

15.
Nitric oxide (NO) and NO synthases (NOSs) are crucial factors in many pathophysiological processes such as inflammation, vascular/neurological function, and many types of cancer. Noninvasive imaging of NO or NOS can provide new insights in understanding these diseases and facilitate the development of novel therapeutic strategies. In this review, we will summarize the current state-of-the-art multimodality imaging in detecting NO and NOSs, including optical (fluorescence, chemiluminescence, and bioluminescence), electron paramagnetic resonance (EPR), magnetic resonance (MR), and positron emission tomography (PET). With continued effort over the last several years, these noninvasive imaging techniques can now reveal the biodistribution of NO or NOS in living subjects with high fidelity which will greatly facilitate scientists/clinicians in the development of new drugs and/or patient management. Lastly, we will also discuss future directions/applications of NO/NOS imaging. Successful development of novel NO/NOS imaging agents with optimal in vivo stability and desirable pharmacokinetics for clinical translation will enable the maximum benefit in patient management.  相似文献   

16.
Characterization of Drosophila nitric oxide synthase: a biochemical study   总被引:1,自引:0,他引:1  
The heme and flavin-binding domains of Drosophila nitric oxide synthase (DNOS) were expressed in Escherichia coli using the expression vector pCW. The denatured molecular mass of the expressed protein was 152kDa along with a proteolytically cleaved product of 121kDa. The DNOS heme protein exhibited very low Ca(2+)/calmodulin-dependent NO synthase activity. The trypsin digestion patterns were different from nNOS. The full-length DNOS protein had high degree of stability against trypsin. The activity assay of trypsin-digested protein confirmed the same result. Urea dissociation profile of DNOS full-length protein showed that the reductase domain activity was much more susceptible towards urea than the oxygenase domain activity. Urea gradient gel of DNOS full-length protein established distinct transition of dissociation and unfolding in the range 3-4M urea. Reductase domain activity of full-length DNOS protein against external electron acceptors like cytochrome c indicated slow electron transfer from FMN. The bacterial expression of DNOS full-length protein represents an important development in structure-function studies of this enzyme and comparison with other mammalian NOS enzymes which is evolutionary significant.  相似文献   

17.
We report an indirect method for synthesis of previously inaccessible diazeniumdiolated carbamates. Synthesis involves use of previously reported triisopropylsilyloxymethylated isopropylamine diazeniumdiolate (TOM-ylated IPA/NO). These novel diazeniumdiolated carbamate prodrugs upon activation release nitric oxide (NO) similar to their secondary amine counterparts. They are also efficient sources of intracellular NO. These prodrugs may have potential applications as therapeutic NO-donors.  相似文献   

18.
We describe here a new compound, B-NOD, which, in vitro and in situ, releases nitric oxide (NO). Its activity in situ persists for more than 7 h, it does not cause a fall in blood pressure or an increase in heart rate and can be orally administered. It increases cyclic guanosine monophosphate (cGMP) and prevents platelet aggregation. In vitro, its release of NO is augmented by the presence of living cells (blood platelets). B-NOD may be useful in a number of clinical conditions in which prolonged release of NO without hemodynamic effects are desirable. A combination of aspirin with B-NOD could be formulated in which the individual concentrations of aspirin and B-NOD may be useful in the long-term treatment of coronary artery disease and in clinical situations in which long-term release of NO may be beneficial.  相似文献   

19.
20.
Intersubunit intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in nitric oxide (NO) synthesis by NO synthase (NOS). Previous crystal structures and functional studies primarily concerned an enzyme conformation, which serves as the input state for reduction of FMN by electrons from NADPH and flavin adenine dinucleotide (FAD) in the reductase domain. To favor the formation of the output state for the subsequent IET from FMN to heme in the oxygenase domain, a novel truncated two-domain oxyFMN construct of rat neuronal NOS (nNOS), in which only the FMN and heme domains were present, was designed and expressed. The kinetics of IET between the FMN and heme domains in the nNOS oxyFMN construct in the presence and absence of added calmodulin (CaM) were directly determined using laser flash photolysis of CO dissociation in comparative studies on partially reduced oxyFMN and single-domain heme oxygenase constructs. The IET rate constant in the presence of CaM (262 s(-)(1)) was increased approximately 10-fold compared to that in the absence of CaM (22 s(-)(1)). The effect of CaM on interdomain interactions was further evidenced by electron paramagnetic resonance (EPR) spectra. This work provides the first direct evidence of the CaM control of electron transfer (ET) between FMN and heme domains through facilitation of the FMN/heme interactions in the output state. Therefore, CaM controls IET between heme and FMN domains by a conformational gated mechanism. This is essential in coupling ET in the reductase domain in NOS with NO synthesis in the oxygenase domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号