首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is a personal perspective on the developments in the field of protein folding over approximately the last 40 years. In addition to its historical aspects, the article presents a view of the principles of protein folding with particular emphasis on the relationship of these principles to the problem of protein structure prediction. It is argued that despite much that is new, the essential elements of our current understanding of protein folding were anticipated by researchers many years ago. These elements include the recognition of the central importance of the polypeptide backbone as a determinant of protein conformation, hierarchical protein folding, and multiple folding pathways. Important areas of progress include a detailed characterization of the folding pathways of a number of proteins and a fundamental understanding of the physical chemical forces that determine protein stability. Despite these developments, fold prediction algorithms still encounter difficulties in identifying the correct fold for a given sequence. This may be due to the possibility that the free energy differences between at least a few alternate conformations of many proteins are not large. Significant progress in protein structure prediction has been due primarily to the explosive growth of sequence and structural databases. However, further progress is likely to depend in part on the ability to combine information available from databases with principles and algorithms derived from physical chemical studies of protein folding. An approach to the integration of the two areas is outlined with specific reference to the PrISM program that is a fully integrated sequence/structural-analysis/fold-recognition/homology model building software system.  相似文献   

2.
The understanding of the folding mechanisms of single-domain proteins is an essential step in the understanding of protein folding in general. Recently, we developed a mesoscopic CA-CB side-chain protein model, which was successfully applied in protein structure prediction, studies of protein thermodynamics, and modeling of protein complexes. In this research, this model is employed in a detailed characterization of the folding process of a simple globular protein, the B1 domain of IgG-binding protein G (GB1). There is a vast body of experimental facts and theoretical findings for this protein. Performing unbiased, ab initio simulations, we demonstrated that the GB1 folding proceeds via the formation of an extended folding nucleus, followed by slow structure fine-tuning. Remarkably, a subset of native interactions drives the folding from the very beginning. The emerging comprehensive picture of GB1 folding perfectly matches and extends the previous experimental and theoretical studies.  相似文献   

3.
A key learning outcome for undergraduate biochemistry classes is a thorough understanding of the principles of protein structure. Traditional approaches to teaching this material, which include two‐dimensional (2D) images on paper, physical molecular modeling kits, and projections of 3D structures into 2D, are unable to fully capture the dynamic 3D nature of proteins. We have built a virtual reality application, Peppy, aimed at facilitating teaching of the principles of protein secondary structure. Rather than attempt to model molecules with the same fidelity to the underlying physical chemistry as existing, research‐oriented molecular modelling approaches, we took the more straightforward approach of harnessing the Unity video game physics engine. Indeed, the simplicity and limitations of our model are strengths in a teaching context, provoking questions and thus deeper understanding. Peppy allows exploration of the relative effects of hydrogen bonding (and electrostatic interactions more generally), backbone φ/ψ angles, basic chemical structure, and steric effects on a polypeptide structure in an accessible format that is novel, dynamic, and fun to use. Apart from describing the implementation and use of Peppy, we discuss the outcomes of deploying Peppy in undergraduate biochemistry courses.  相似文献   

4.
An adaptable standard for protein export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
Wiseman RL  Powers ET  Buxbaum JN  Kelly JW  Balch WE 《Cell》2007,131(4):809-821
To provide an integrated view of endoplasmic reticulum (ER) function in protein export, we have described the interdependence of protein folding energetics and the adaptable biology of cellular protein folding and transport through the exocytic pathway. A simplified treatment of the protein homeostasis network and a formalism for how this network of competing pathways interprets protein folding kinetics and thermodynamics provides a framework for understanding cellular protein trafficking. We illustrate how folding and misfolding energetics, in concert with the adjustable biological capacities of the folding, degradation, and export pathways, collectively dictate an adaptable standard for protein export from the ER. A model of folding for export (FoldEx) establishes that no single feature dictates folding and transport efficiency. Instead, a network view provides insight into the basis for cellular diversity, disease origins, and protein homeostasis, and predicts strategies for restoring protein homeostasis in protein-misfolding diseases.  相似文献   

5.
A method for teaching the principles of evolution in a 50-minute lecture for undergraduate non-biology majors is described. The method “unpacks” evolution into three observable, factual occurrences: replication (R, reproduction), variation (V, differences between parent and offspring and siblings), and selection (S, nonrandom differential survival of offspring). This method has been particularly effective in demonstrating to students that evolution is the factual, unintended consequence of three independent phenomena (R, V, S).  相似文献   

6.
Over the past three decades the protein folding field has undergone monumental changes. Originally a purely academic question, how a protein folds has now become vital in understanding diseases and our abilities to rationally manipulate cellular life by engineering protein folding pathways. We review and contrast past and recent developments in the protein folding field. Specifically, we discuss the progress in our understanding of protein folding thermodynamics and kinetics, the properties of evasive intermediates, and unfolded states. We also discuss how some abnormalities in protein folding lead to protein aggregation and human diseases.  相似文献   

7.
Understanding the process of protein folding has been recognized as an important challenge for >70 years. It is, quintessentially, a thermodynamic problem and, arguably, thermodynamics is our most powerful discipline for understanding biological systems. Yet, despite all this, we still lack predictive understanding of protein folding. Is something missing from this picture?  相似文献   

8.
Although progress has been made in understanding the thermodynamic stability of water-soluble proteins, our understanding of the folding of membrane proteins is at a relatively primitive level. A major obstacle to understanding the folding of membrane proteins is the discovery of systems in which the folding is in thermodynamic equilibrium, and the development of methods to quantitatively assess this equilibrium in micelles and bilayers. Here, we describe the application of disulfide cross-linking to quantitatively measure the thermodynamics of membrane protein association in detergent micelles. The method involves initiating disulfide cross-linking of a protein under reversible redox conditions in a thiol-disulfide buffer and quantitative assessment of the extent of cross-linking at equilibrium. The 19-46 alpha-helical transmembrane segment of the M2 protein from the influenza A virus was used as a model membrane protein system for this study. Previously it has been shown that transmembrane peptides from this protein specifically self-assemble into tetramers that retain the ability to bind to the drug amantadine. We used thiol-disulfide exchange to quantitatively measure the tetramerization equilibrium of this transmembrane protein in dodecylphosphocholine (DPC) detergent micelles. The association constants obtained agree remarkably well with those derived from analytical ultracentrifugation studies. The experimental method established herein should provide a broadly applicable tool for thermodynamic studies of folding, oligomerization and protein-protein interactions of membrane proteins.  相似文献   

9.
10.
Beyond proteins.     
Increased understanding of the biological principles of protein structure and folding, combined with advances in protein-synthetic chemistry, should not only allow us to borrow from biology but also to depart from it and so produce protein-like, but non-protein, molecules and molecular devices. However, radical departures from protein-like forms into more-robust and truly novel 'smart' polymers and materials first require a solution to the protein-folding problem using only fundamental physicochemical principles. Any such practical solution may not come from raw computing power alone but rather from a deeper understanding of topological principles.  相似文献   

11.
12.
We investigate the effect of structural gatekeepers on the folding of the ribosomal protein S6. Folding thermodynamics and early refolding kinetics are studied for this system utilizing computer simulations of a minimalist protein model. When gatekeepers are eliminated, the thermodynamic signature of a folding intermediate emerges, and a marked decrease in folding efficiency is observed. We explain the prerequisites that determine the "strength" of a given gatekeeper. The investigated gatekeepers are found to have distinct functions, and to guide the folding and time-dependent packing of non-overlapping secondary structure elements in the protein. Gatekeepers avoid kinetic traps during folding by favoring the formation of "productive topologies" on the way to the native state. The trends in folding rates in the presence/absence of gatekeepers observed for our minimalist model of S6 are in very good agreement with experimental data on this protein.  相似文献   

13.
Protein folding is a topic of fundamental interest since it concerns the mechanisms by which the genetic information is translated into the three-dimensional and functional structure of proteins. In these post-genomic times, the knowledge of the fundamental principles is required in the exploitation of the information contained in the increasing number of sequenced genomes. Protein folding also has a practical application in the understanding of different pathologies associated with protein misfolding and aggregation. Significant advances have been made ranging from the Anfinsen postulate to the "new view" which describes the folding process in terms of an energy landscape. These insights arise from both theoretical and experimental studies. Unravelling the mechanisms of protein folding represents one of the most challenging problems to day. This is an extremely active field of research involving aspects of biology, chemistry, biochemistry, computer science and physics.  相似文献   

14.
本科的化学基础知识是生命科学专业的核心课程"生物化学"的重要基础.本文在对生物化学与大学化学知识的密切关系进行学理分析的基础上,对无机化学、有机化学、分析化学和物理化学四门课中与生物化学内容密切相关的知识点进行梳理和总结.以肽键、酶作用机制、蛋白质纯化为例,给出化学基础知识对生物化学知识点的关联性.借助第二课堂启迪学生...  相似文献   

15.
探索和理解蛋白质折叠问题一直是分子生物学、结构生物学和生物物理学的终极挑战.未折叠的蛋白质应该存在一种普遍初始热力学亚稳态,否则无法解释蛋白质是如何在剧烈的热振动干扰下完成快速精确折叠的.本文通过分析水溶液环境和蛋白质折叠的相关性,揭示了一种由水分子屏蔽效应引起的未折叠蛋白质的普遍初始热力学亚稳态,该亚稳态的存在是水溶液环境中水分子的物理性质决定,并赋予未折叠蛋白质抵抗热扰动和避免错误折叠的能力.我们通过研究已发表的实验数据和建立分子模型,找到了该初始热力学亚稳态存在的相关证据,并推测了该亚稳态导致蛋白质精确折叠的相关物理学机制.  相似文献   

16.
Using primary literature is an effective tool for promoting active learning and critical thinking in science classes. However, it can be challenging to use primary literature in large classes and in classes for nonscience majors. We describe the development and implementation of an online tutorial for helping nonscience majors learn to read primary literature in biology. The tutorial includes content about the scientific process and the structure of scientific papers and provides opportunities for students to practice reading primary literature. We describe the use of the tutorial in Biology of Exercise, a course for nonscience majors. Students used the tutorial outside of class to learn the basic principles involved in reading scientific papers, enabling class sessions to focus on active-learning activities and substantive class discussions.  相似文献   

17.
White SH 《FEBS letters》2003,555(1):116-121
Recent three-dimensional structures of helical membrane proteins present new challenges for the prediction of structure from amino acid sequence. Membrane proteins reside stably in a thermodynamic free energy minimum after release into the membrane's bilayer fabric from the translocon complex. This means that structure prediction is primarily a problem of physical chemistry. But the folding processes within the translocon must also be considered. A distilled overview of the physical principles of membrane protein stability is presented, and extended to encompass translocon-assisted folding.  相似文献   

18.
Although protein folding is a simple outcome of the underlying thermodynamics, arriving at a quantitative and predictive understanding of how proteins fold nevertheless poses huge challenges. Therefore, both advanced experimental and computational methods are continuously being developed and refined to probe and reveal the atomistic details of protein folding dynamics and mechanisms. Herein, we provide a concise review of recent developments in spectroscopic studies of protein folding, with a focus on new triggering and probing methods. In particular, we describe several laser-based techniques for triggering protein folding/unfolding on the picosecond and/or nanosecond timescales and various linear and nonlinear spectroscopic techniques for interrogating protein conformations, conformational transitions, and dynamics.  相似文献   

19.
20.
By following a consistent line of physical reasoning, some fundamental understanding about the foldability of proteins has been achieved. In recent years, this has led to the development of a number of successful algorithms for optimizing potential energy functions for folding protein models. The differences between the folding mechanisms of simple, contact-based lattice proteins and more traditional, realistic protein models, however, still call for further development of the potentials in addition to the optimization approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号