首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of protein kinases p38 and CK2 (casein kinase II) in the response of RAW 264.7 macrophages to the lipopolysaccharide (LPS) from gram-negative bacteria was studied. Using specific p38 and CK2 inhibitors (p38 MAP kinase Inhibitor XI and casein kinase II Inhibitor III, respectively), we investigated the effects of these protein kinases on (i) LPS-induced activation of signaling pathways involving nuclear factor κB (NF-κB), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38, and interferon regulatory factor 3 (IRF3); (ii) expression of Toll-like receptor 4 (TLR4) and inducible heat-shock proteins HSP72 and HSP90; and (iii) production of interleukins IL-1α, IL-1β, IL-6, tumor necrosis factor α, and IL-10. Activation of the proapoptotic signaling in the macrophages was evaluated from the ratio between the active and inactive caspase-3 forms and p53 phosphorylation. Six hours after LPS addition (2.5 μg/ml) to RAW 264.7 cells, activation of the TLR4 signaling pathways was observed that was accompanied by a significant increase in phosphorylation of IκB kinase α/β, NF-κB (at both Ser536 and Ser276), p38, JNK, and IRF3. Other effects of macrophage incubation with LPS were an increase in the contents of TLR4, inducible heat-shock proteins (HSPs), and pro- and anti-inflammatory cytokines, as well as slight activation of the pro-apoptotic signaling in the cells. Using inhibitor analysis, we found that during the early response of macrophages to the LPS, both CK2 and p38 modulate activation of MAP kinase and NF-κB signaling pathways and p65 phosphorylation at Ser276/Ser536 and cause accumulation of HSP72, HSP90 and the LPS-recognizing receptor TLR4. Suppression of the p38 MAP kinase and CK2 activities by specific inhibitors (Inhibitor XI and Inhibitor III, respectively) resulted in the impairment of the macrophage effector function manifested as a decrease in the production of the early-response proinflammatory cytokines and disbalance between the pro- and anti-apoptotic signaling pathways leading presumably to apoptosis development. Taken together, our data indicate the inefficiency of therapeutic application of p38 and CK2 inhibitors during the early stages of inflammatory response.  相似文献   

2.
3.
4.
5.
Anisomycin, a translational inhibitor secreted by Streptomyces spp., strongly activates the stress-activated mitogen-activated protein (MAP) kinases JNK/SAPK (c-Jun NH2-terminal kinase/stress-activated protein kinase) and p38/RK in mammalian cells, resulting in rapid induction of immediate-early (IE) genes in the nucleus. Here, we have characterized this response further with respect to homologous and heterologous desensitization of IE gene induction and stress kinase activation. We show that anisomycin acts exactly like a signalling agonist in eliciting highly specific and virtually complete homologous desensitization. Anisomycin desensitization of a panel of IE genes (c-fos, fosB, c-jun, junB, and junD), using epidermal growth factor (EGF), basic fibroblast growth factor, (bFGF), tumor necrosis factor alpha (TNF-α), anisomycin, tetradecanoyl phorbol acetate (TPA), and UV radiation as secondary stimuli, was found to be extremely specific both with respect to the secondary stimuli and at the level of individual genes. Further, we show that anisomycin-induced homologous desensitization is caused by the fact that anisomycin no longer activates the JNK/SAPK and p38/RK MAP kinase cascades in desensitized cells. In anisomycin-desensitized cells, activation of JNK/SAPKs by UV radiation and hyperosmolarity is almost completely lost, and that of the p38/RK cascade is reduced to about 50% of the normal response. However, all other stimuli produced normal or augmented activation of these two kinase cascades in anisomycin-desensitized cells. These data show that anisomycin behaves like a true signalling agonist and suggest that the anisomycin-desensitized signalling component(s) is not involved in JNK/SAPK or p38/RK activation by EGF, bFGF, TNF-α, or TPA but may play a significant role in UV- and hyperosmolarity-stimulated responses.  相似文献   

6.
7.
As well as providing a structural framework, the actin cytoskeleton plays integral roles in cell death, survival, and proliferation. The disruption of the actin cytoskeleton results in the activation of the c-Jun N-terminal kinase (JNK) stress-activated protein kinase (SAPK) pathway; however, the sensor of actin integrity that couples to the JNK pathway has not been characterized in mammalian cells. We now report that the mammalian Ste20-like (MST) kinases mediate the activation of the JNK pathway in response to the disruption of the actin cytoskeleton. One consequence of actin disruption is the JNK-mediated stabilization of p21Waf1/Cip1 (p21) via the phosphorylation of Thr57. The expression of MST1 or MST2 was sufficient to stabilize p21 in a JNK- and Thr57-dependent manner, while the stabilization of p21 by actin disruption required MST activity. These data indicate that, in addition to being components of the Salvador-Warts-Hippo tumor suppressor network and binding partners of c-Raf and the RASSF1A tumor suppressor, MST kinases serve to monitor cytoskeletal integrity and couple via the JNK SAPK pathway to the regulation of a key cell cycle regulatory protein.The actin cytoskeleton is a dynamic structure that determines cell morphology and motility. In addition, the cytoskeleton also influences other biological functions, such as proliferation, survival, and death, although the mechanistic details linking the cytoskeleton to these processes have not been fully elucidated. Considerable effort has focused on characterizing the signal transduction pathways that control cytoskeletal organization (33). The actin cytoskeleton itself also may regulate cell signaling; for example, mechanical stretching, shear stress, and cytoskeletal disruption each have been shown to activate stress-activated protein kinase (SAPK) pathways (34). Although in Saccharomyces cerevisiae an actin integrity-responsive pathway has been identified in which actin cytoskeleton disassembly results in the activation of the Ssk2p kinase that lies upstream of the Hog1 SAPK pathway (7, 56), an analogous pathway in mammalian cells has not been delineated.SAPK pathways are specific examples of mitogen-activated protein kinase (MAPK) cascades (43). At the bottom of archetypal MAPK pathways are signal-propagating kinases such as ERK1 and ERK2; in the case of SAPK signaling, the similarly positioned kinases are JNK and p38 family members. MAPK are phosphorylated and regulated by MAPK kinases (MAP2K); for c-Jun N-terminal kinase (JNK), the MAP2K are MKK4 and MKK7, while for p38 they are MKK3 and MKK6. Moving stepwise further upstream are MAP3K and MAP4K, although in some pathways there may be no need for a MAP4K, the Ras activation of the MAP3K Raf in the ERK MAPK pathway being one example.Although much recent interest has focused on their antiproliferative and proapoptotic functions as a component of the Salvador-Warts-Hippo tumor suppressor network (31) and as binding partners of the c-Raf MAP3K (42) and RASSF1A tumor suppressor (39), the mammalian Ste20-like kinases 1 and 2 (MST1 and MST2, respectively) were first identified (17) because of their homology with the Saccharomyces cerevisiae Ste20 MAP4K that acts upstream of three MAPK cascades, including the Ste11/Pbs2/Hog1 SAPK pathway (51). Although the MST kinase domains are very similar to those in Ste20 and mammalian p21-activated kinases (PAK), there is little homology outside this domain, and as a result MST1 and MST2 make up their own Ste20 subfamily without direct orthologues prior to the emergence of the bilaterian subregnum. Given the homology with Ste20, initial characterization focused on the possibility that MST kinases were involved in MAPK regulation, and indeed MST kinases were found to activate SAPK pathways (27), which was associated with the activation of MKK6 and MKK7 (27). It also was found that MST1 coexpression with a kinase-dead version of the MAP3K MEKK1 blocked JNK activation (26). Consistently with these results, MST1 could not activate JNK in cells deleted for both MAP2K enzymes MKK4 and MKK7 (53). Therefore, it appears that MST kinases work at the same level (MAP4K) as Ste20 in the regulation of the SAPK pathways. Although proapoptotic signaling has been shown to contribute to MST activation via caspase-mediated proteolysis, which removes an autoinhibitory domain (27), little is known about how other nonapoptotic stimuli regulate MST.There are several possible consequences resulting from the activation of SAPK pathways in response to modifications to actin cytoskeleton organization or integrity. Actin disruption and consequent JNK activation may induce cell cycle arrest (23) or apoptosis (11), or it may promote cell survival (2). We previously showed that one way JNK activation following cytoskeletal disruption might contribute to cell cycle arrest is through the stabilization of the cyclin-dependent kinase inhibitor (CDKI) p21Waf1/Cip1 (p21) (14). The eventual outcome of SAPK activation following actin cytoskeleton modification may be influenced by signal intensity, duration, and cellular context. Further progress toward determining how cytoskeletal disruption generates these outcomes will be possible when the details describing how actin cytoskeletal changes activate SAPK signaling have been established.We wished to determine whether MST kinases sense the integrity of the actin cytoskeleton and link with SAPK signaling. We found that MST2 was colocalized with filamentous actin structures. The expression of MST1 or MST2 was sufficient to activate JNK1, and cytoskeletal disruption activated MST as well as JNK1 in an MST-dependent manner. One consequence of actin disruption is the JNK-mediated stabilization of p21, which was determined to be via phosphorylation of Thr57. The expression of MST1 or MST2 was sufficient to stabilize p21 in a JNK- and Thr57-dependent manner, while the stabilization of p21 by actin disruption required MST activity. These data indicate that MST kinases serve to monitor cytoskeletal integrity and couple via the JNK SAPK pathway to the regulation of a key cell cycle regulatory protein.  相似文献   

8.
We investigated the effects of a novel peroxisome proliferator-activated receptor γ (PPARγ) agonist, KR62776, on osteoclast differentiation and function, and on the underlying signaling pathways. KR62776 markedly suppressed differentiation into osteoclasts in various osteoclast model systems, including bone marrow mononuclear (BMM) cells and a co-culture of calvarial osteoblasts and BMM cells. KR62776 suppressed the activation of tartrate-resistant acid phosphatase (TRAP) and the expression of genes associated with osteoclast differentiation, such as TRAP, dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated receptor (OSCAR). Furthermore, KR62776 reduced resorption pit formation in osteoclasts, and down-regulated genes essential for osteoclast activity, such as Src and αvβ3 integrin. An analysis of a signaling pathway showed that KR62776 inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK), extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB). Together, these results demonstrate that KR62776 negatively affects osteoclast differentiation and activity by inhibiting the RANKL-induced activation of MAP kinases and NF-κB.  相似文献   

9.
We previously reported that transforming growth factor-beta (TGF-beta) activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase, resulting in the stimulation of vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the involvement of stress-activated protein kinase/c- Jun N-terminal kinase (SAPK/JNK), another member of the MAP kinase superfamily, in TGF-beta-induced VEGF synthesis in these cells. TGF-beta markedly induced SAPK/JNK phosphorylation. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced TGF-beta-induced VEGF synthesis. SP600125 suppressed TGF-beta-induced SAPK/JNK phosphorylation. PD98059, an inhibitor of upstream kinase of p44/p42 MAP kinase and SB203580, an inhibitor of p38 MAP kinase, each failed to reduce TGF-beta-induced SAPK/JNK phosphorylation. A combination of SP600125 and PD98059 or SP600125 and SB203580 suppressed TGF-beta-stimulated VEGF synthesis in an additive manner. These results strongly suggest that TGF-beta activates SAPK/JNK in osteoblasts, and that SAPK/JNK plays a role in addition to p42/p44 MAP kinase and p38 MAP kinase in TGF-beta-induced VEGF synthesis.  相似文献   

10.
In vitro and in vivo effects of some inhibitors of the activity of signal cascades NF-κB and SAPK/JNK, and the TLR4 receptor on the immune cells activity were studied. To evaluate in vitro effects, the macrophage-like RAW 264.7 cells were cultured with each of the inhibitors, namely IKK inhibitor XII, SP600125, CLI-095, and OxPAPK (the first two are the inhibitors of NF-κB, SAPK/JNK cascades, and the last two compounds are the inhibitors of the TLR4 receptor activity). On the whole, all of the used inhibitors did not induce pro-inflammatory response in RAW 264.7 cells. On the contrary, the inhibitor of SAPK/JNK cascade, and, especially, the inhibitor of NF-κB cascade significantly decreased production of the TNF-α, IL-1, IL-6, IFN-γ, and IL-10 in RAW 264.7 cells. In these cells, the inhibitors substantially decreased “back-ground stress response” of macrophages, differently reducing a production of heat shock proteins, HSP72 and HSP90-α, and diminishing phosphorylation of signal proteins from NF-κB and SAPK/JNK cascades. Results of in vitro experiments suggest that the inhibitor of NF-κB activity was the most effective. It was this inhibitor that was intraperitonealy injected in Balb/C male mice in the in vivo experiments in order to study its effect on the activity of immune cells. Results showed that IKK Inhibitor XII applied in vivo did not induce pro-inflammatory response in mice, but decreased the activity of NF-κB cascade, and lowered HSP90-α expression in mouse splenic lymphocytes. So, among the studied compounds, IKK Inhibitor XII seems to be a very effective inhibitor that may be used to decrease cytokine and stress response in various pathologies.  相似文献   

11.
We have demonstrated that ischemic neuronal death (apoptosis) of rat CA1 region of the hippocampus was prevented by infusing pituitary adenylate cyclase-activating polypeptide (PACAP) either intracerebroventricularly or intravenously. We have also demonstrated that the activity of mitogen-activated protein (MAP) kinase family members, including ERK (extracellular signal-regulated kinase), Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPK) and p38, was increased in the hippocampus within 1-6 h after brain ischemia. The molecular mechanisms underlying the PACAP anti-apoptotic effect were demonstrated in this study. Ischemic stress had a strong influence on MAP kinase family, especially on JNK/SAPK and p38. PACAP inhibited the activation of JNK/SAPK and p38 after ischemic stress, while ERK is not suppressed. These findings suggest that PACAP inhibits the JNK/SAPK and p38 signaling pathways, thereby protecting neurons against apoptosis.  相似文献   

12.
Hideaki Shimada 《FEBS letters》2010,584(13):2827-2832
Lysophosphatidic acid (LPA), an inflammatory mediator that is elevated in multiple inflammatory diseases, is a potent activator of Rho kinase (ROCK) signaling and of chemokine production in endothelial cells. In this study, LPA activated ROCK, p38, JNK and NF-κB pathways and induced interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) mRNA and protein expression in human endothelial cells. We mapped signaling events downstream of ROCK, driving chemokine production. In summary, MCP-1 production was partly regulated by ROCK acting upstream of p38 and JNK and mediated downstream by NF-κB. IL-8 production was largely driven by ROCK through p38 and JNK activation, but with no involvement of NF-κB.  相似文献   

13.
14.
Previous studies demonstrated that in vitro the protein kinase TAO2 activates MAP/ERK kinases (MEKs) 3, 4, and 6 toward their substrates p38 MAP kinase and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). In this study, we examined the ability of TAO2 to activate stress-sensitive MAP kinase pathways in cells and the relationship between activation of TAO2 and potential downstream pathways. Over-expression of TAO2 activated endogenous JNK/SAPK and p38 but not ERK1/2. Cotransfection experiments suggested that TAO2 selectively activates MEK3 and MEK6 but not MEKs 1, 4, or 7. Coimmunoprecipitation demonstrated that endogenous TAO2 specifically associates with MEK3 and MEK6 providing one mechanism for preferential recognition of MEKs upstream of p38. Sorbitol, and to a lesser extent, sodium chloride, Taxol, and nocodazole increased TAO2 activity toward itself and kinase-dead MEKs 3 and 6. Activation of endogenous TAO2 during differentiation of C2C12 myoblasts paralleled activation of p38 but not JNK/SAPK, consistent with the idea that TAO2 is a physiological regulator of p38 under certain circumstances.  相似文献   

15.
We have previously reported that IL-β-induced miR-146a and miR-146b expression negatively regulates IL-8 and RANTES release in human alveolar A549 epithelial cells. To determine the intracellular pathways that regulate this response, we demonstrate IL-1β-induced activation of the nuclear factor (NF)-κB, extracellular regulated kinase (ERK)-1/2, c-jun N-terminal kinase (JNK)-1/2 and p38 mitogen activated kinase (MAP) kinase pathways. Subsequent pharmacological studies show that IL-1β-induced miR-146a, IL-8 and RANTES production was regulated via NF-κB and JNK-1/2 whilst miR-146b expression was mediated via MEK-1/2 and JNK-1/2. These divergent intracellular pathways likely explain the differential expression and biological action of the miR-146 isoforms.  相似文献   

16.
Induction of CYP2E1 by pyrazole (PY) potentiated the hepatotoxicity induced by TNFα in mice. We evaluated the role of nitrosative and oxidative stress and the NF-κB activation pathway in this liver injury. The iNOS inhibitor N-(3-aminomethyl)benzylacetamindine (1400W) or the antioxidant N-acetyl-l-cysteine (NAC) prevented this liver injury. TNFα plus PY treatment triggered radical stress in the liver with increased lipid peroxidation and decreased glutathione and caused mitochondrial damage as reflected by elevated membrane swelling and cytochrome c release. The radical stress and mitochondrial damage were prevented by 1400W and NAC. TNFα plus PY treatment elevated 3-nitrotyrosine adduct formation and induced NOS2 in the liver; 1400W and NAC blocked these changes. A lower extent of liver injury and oxidative stress was found in NOS2?/? mice treated with TNFα plus PY compared with wild-type controls. Neither 1400W nor NAC modified CYP2E1 activity or protein. Activation of JNK and p38MAPK was weaker in TNFα plus PY-treated NOS2?/? mice and 1400W and NAC blocked the activation of JNK and p38MAPK in wild-type mice. IKKα/β protein levels were decreased by TNFα plus PY treatment, whereas IκBα and IκBβ protein levels were elevated compared with saline, PY, or TNFα alone. NF-κB DNA binding activity was increased by TNFα alone but lowered by TNFα plus PY. All these changes were blocked by 1400W and NAC. NF-κB activation products such as Bcl-2, Bcl-XL, cFLIPS, cFLIPL, and Mn-SOD were reduced by TNFα plus PY and restored by 1400W or NAC. We conclude that TNFα plus CYP2E1 induces oxidative/nitrosative stress, which plays a role in the activation of JNK or p38MAPK and mitochondrial damage. These effects combine with the blunting of the NF-κB activation pathways and the synthesis of protective factors to cause liver injury.  相似文献   

17.
Acute versus chronic inflammation is controlled by the accurate activation and regulation of interdependent signaling cascades. TNF-receptor 1 engagement concomitantly activates NF-κB and JNK signaling. The correctly timed activation of these pathways is the key to account for the balance between NF-κB-mediated cell survival and cell death, the latter fostered by prolonged JNK activation. Tristetraprolin (TTP), initially described as an mRNA destabilizing protein, acts as negative feedback regulator of the inflammatory response: it destabilizes cytokine-mRNAs but also acts as an NF-κB inhibitor by interfering with the p65/RelA nuclear import pathway. Our biochemical studies provide evidence that TTP contributes to the NF-κB/JNK balance. We find that the MAP 3-kinase MEKK1 acts as a novel TTP kinase that, together with the TNF receptor-associated factor 2 (TRAF2), constitutes not only a main determinate of the NF-κB-JNK cross-talk but also facilitates "TTP hypermodification": MEKK1 triggers TTP phosphorylation as prerequisite for its Lys-63-linked, TRAF2-mediated ubiquitination. Consequently, TTP no longer affects NF-κB activity but promotes the activation of JNK. Based on our data, we suggest a model where upon TNFα induction, TTP transits a hypo- to hypermodified state, thereby contributing to the molecular regulation of NF-κB versus JNK signaling cascades.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号