首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of dynamic kinetic stability (DKS) as a stability kind that governs the evolutionary process for both chemical and biological replicators, opens up new avenues for uncovering the chemical basis of biological phenomena. In this paper, we utilize the DKS concept to explore the chemical roots of two of biology’s central concepts—function and complexity. It is found that the selection rule in the world of persistent replicating systems—from DKS less stable to DKS more stable—is the operational law whose very existence leads to the creation of function from of a world initially devoid of function. The origin of biological complexity is found to be directly related to the origin of function through an underlying connection between the two phenomena. Thus the emergence of both function and complexity during abiogenesis, and their growing expression during biological evolution, are found to be governed by the same single driving force, the drive toward greater DKS. It is reaffirmed that the essence of biological phenomena can be best revealed by uncovering biology’s chemical roots, by elucidating the physicochemical principles that governed the process by which life on earth emerged from inanimate matter.  相似文献   

2.
Darwinian evolution, as it was first conceived, has two dimensions: adaptation, that is, selection based upon “apt function”, defined as the “good fit” between an organism’s metabolic and biological demands and the environment in which it is embedded; and heredity, the transmissible memory of past apt function. Modern Darwinism has come to focus almost exclusively on hereditary memory, eclipsing the—arguably still-problematic—phenomenon of adaptation. As a result, modern Darwinism retains, at its core, certain incoherencies that, as long as they remain unresolved, preclude the emergence of a fully-coherent theory of evolution. Resolving the incoherencies will involve clarifying the relationship between embodied memory and apt function. In short, adaptation is a problem of semiotics: the organism must interpret the environment to fit well into it. This is well-illustrated by the constructed environments built by colonies of social insects, such as hives or nests, and the ancillary structures that contain them, forming an organism-like system known as a superorganism. The superorganism is marked by a kind of extended physiology, in that these constructed environments often serve as adaptive interfaces between the nest and ambient environment, and are constructed to manage the matter and energy flows between environments that constitute the process of adaptation. These constructed environments are also semiotic phenomena: interpretive structures, governed by information flow between the member insects and the structures they build. I review our findings on one such example: the mounds built by the fungus-cultivating termites of the genus Macrotermes. These structures are dynamic forms that are sustained by flows of soil from deep horizons up into the mound. The form, and hence the function, of the mound is determined by several environmental cues, most notably water and wind, as well as how termites interpret these cues, and signals that flow between termites, both directly and vicariously through the structures they build.  相似文献   

3.
Our perspective highlights potentially important links between disparate fields—biological oceanography, climate change research, and experimental evolutionary biology. We focus on one important functional group—photoautotrophic microbes (phytoplankton), which are responsible for ~50% of global primary productivity. Global climate change currently results in the simultaneous change of several conditions such as warming, acidification, and nutrient supply. It thus has the potential to dramatically change phytoplankton physiology, community composition, and may result in adaptive evolution. Although their large population sizes, standing genetic variation, and rapid turnover time should promote swift evolutionary change, oceanographers have focussed on describing patterns of present day physiological differentiation rather than measure potential adaptation in evolution experiments, the only direct way to address whether and at which rate phytoplankton species will adapt to environmental change. Important open questions are (1) is adaptation limited by existing genetic variation or fundamental constraints? (2) Will complex ecological settings such as gradual versus abrupt environmental change influence adaptation processes? (3) How will increasing environmental variability affect the evolution of phenotypic plasticity patterns? Because marine phytoplankton species display rapid acclimation capacity (phenotypic buffering), a systematic study of reaction norms renders them particularly interesting to the evolutionary biology research community.  相似文献   

4.
5.
Evolutionary adaptation has been suggested as the hallmark of life that best accounts for life’s creativity. However, current evolutionary approaches still fail to give an adequate account of it, even if they are able to explain both the origin of novelties and the proliferation of certain traits in a population. Although modern-synthesis Darwinism is today usually appraised as too narrow a position to cope with all the complexities of developmental and structural biology—not to say biosemiotic phenomena—, Darwinism need not be if we separate metaphor from reality in natural selection in order to show the axiological complexity of this concept. This can shed light on the relationship between biosemiotics and biological evolution.  相似文献   

6.
Flowering time is a well-studied subject in ecology, evolution and molecular biology. Long-term phenological studies have shown relationships between flowering time and environmental and endogenous factors in many species. In contrast, molecular studies using model plants have revealed a complex regulatory network of flowering. We propose that flowering would be a model trait for the integrated study of ecology, evolution and molecular biology. We introduce briefly the flowering regulatory pathways of Arabidopsis thaliana, followed by molecular techniques such as transgenic manipulation, quantitative real-time PCR and detection of differentially expressed genes that could facilitate the study of ‘nonmodel’ species of ecological interest but with little available genome information. Application of the flowering gene network to wild species will be illustrated by two examples: modeling and prediction of the expression of flowering genes in Arabidopsis halleri, and the latitudinal cline of bud set and cessation in Populus. Finally, we discuss the challenges in integrating knowledge of the regulatory network on flowering into ecologically unique flowering phenomena such as synchronous intermittent mass flowering—the topic of this special issue.  相似文献   

7.
Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations. When we manipulated the supply rate of beneficial mutations, by altering effective population size during evolution, we found that it constrained adaptation in some selection lines by restricting access to rare beneficial mutations, but that the effect varied among the genotypes in our experiment. These results suggest that mutational neighbourhood varies even among genotypes that differ by a single amino acid change, and this determines their capacity for adaptation as well as the influence of population biology processes that alter mutation supply rate.  相似文献   

8.
Theory predicts that predator–prey interactions can generate reciprocal selection pressures on species pairs, which can result in local adaptation, yet the presence and pattern of local adaptation is poorly studied in vertebrate predator–prey systems. Here, we used a reciprocal common garden (laboratory) experimental design involving comparisons between local and foreign populations to determine if local adaptation was present between a generalist predator—the pigmy rattlesnake (Sistrurus miliarius)—and a co-occurring prey—the squirrel treefrog (Hyla squirella). We conducted toxicity trials using snake venom from two populations separated by 340 km tested on prey from sympatric and allopatric populations, resulting in data from four venom origin–frog origin combinations. We assessed venom effectiveness using two measures (frog mortality at 24 h and time to frog death) and then used regression analyses to look for a signal of local adaptation with either measure. We found evidence for local adaptation for one measure (time to death), but not the other (frog mortality). We argue that in this system, the time to death of a prey item is a more ecologically relevant measure of venom effectiveness than is frog mortality at 24 h. Our results document an example of local adaptation between two interacting vertebrates using a whole-organism assay and a local versus foreign criteria and provide evidence that population-level variation in snake venom is adaptive.  相似文献   

9.
The dynamics of adaptation are difficult to predict because it is highly stochastic even in large populations. The uncertainty emerges from random genetic drift arising in a vanguard of particularly fit individuals of the population. Several approaches have been developed to analyze the crucial role of genetic drift on the expected dynamics of adaptation, including the mean fitness of the entire population, or the fate of newly arising beneficial deleterious mutations. However, little is known about how genetic drift causes fluctuations to emerge on the population level, where it becomes palpable as variations in the adaptation speed and the fitness distribution. Yet these phenomena control the decay of genetic diversity and variability in evolution experiments and are key to a truly predictive understanding of evolutionary processes. Here, we show that correlations induced by these emergent fluctuations can be computed at any arbitrary order by a suitable choice of a dynamical constraint. The resulting linear equations exhibit fluctuation-induced terms that amplify short-distance correlations and suppress long-distance ones. These terms, which are in general not small, control the decay of genetic diversity and, for wave-tip dominated (“pulled”) waves, lead to anticorrelations between the tip of the wave and the lagging bulk of the population. While it is natural to consider the process of adaptation as a branching random walk in fitness space subject to a constraint (due to finite resources), we show that other traveling wave phenomena in ecology and evolution likewise fall into this class of constrained branching random walks. Our methods, therefore, provide a systematic approach toward analyzing fluctuations in a wide range of population biological processes, such as adaptation, genetic meltdown, species invasions, or epidemics.  相似文献   

10.
Adaptive evolution requires both raw genetic material and an accessible path of high fitness from one fitness peak to another. In this study, we used an introgression line (IL) population to map quantitative trait loci (QTL) for leaf traits thought to be associated with adaptation to precipitation in wild tomatoes (Solanum sect. Lycopersicon; Solanaceae). A QTL sign test showed that several traits likely evolved under directional natural selection. Leaf traits correlated across species do not share a common genetic basis, consistent with a scenario in which selection maintains trait covariation unconstrained by pleiotropy or linkage disequilibrium. Two large effect QTL for stomatal distribution colocalized with key genes in the stomatal development pathway, suggesting promising candidates for the molecular bases of adaptation in these species. Furthermore, macroevolutionary transitions between vastly different stomatal distributions may not be constrained when such large-effect mutations are available. Finally, genetic correlations between stomatal traits measured in this study and data on carbon isotope discrimination from the same ILs support a functional hypothesis that the distribution of stomata affects the resistance to CO2 diffusion inside the leaf, a trait implicated in climatic adaptation in wild tomatoes. Along with evidence from previous comparative and experimental studies, this analysis indicates that leaf traits are an important component of climatic niche adaptation in wild tomatoes and demonstrates that some trait transitions between species could have involved few, large-effect genetic changes, allowing rapid responses to new environmental conditions.  相似文献   

11.
The possible effect of transfer ribonucleic acid (tRNA) concentrations on codons decoding time is a fundamental biomedical research question; however, due to a large number of variables affecting this process and the non-direct relation between them, a conclusive answer to this question has eluded so far researchers in the field. In this study, we perform a novel analysis of the ribosome profiling data of four organisms which enables ranking the decoding times of different codons while filtering translational phenomena such as experimental biases, extreme ribosomal pauses and ribosome traffic jams. Based on this filtering, we show for the first time that there is a significant correlation between tRNA concentrations and the codons estimated decoding time both in prokaryotes and in eukaryotes in natural conditions (−0.38 to −0.66, all P values <0.006); in addition, we show that when considering tRNA concentrations, codons decoding times are not correlated with aminoacyl-tRNA levels. The reported results support the conjecture that translation efficiency is directly influenced by the tRNA levels in the cell. Thus, they should help to understand the evolution of synonymous aspects of coding sequences via the adaptation of their codons to the tRNA pool.  相似文献   

12.
The maintenance of males and outcrossing is widespread, despite considerable costs of males. By enabling recombination between distinct genotypes, outcrossing may be advantageous during adaptation to novel environments and if so, it should be selected for under environmental challenge. However, a given environmental change may influence fitness of male, female, and hermaphrodite or asexual individuals differently, and hence the relationship between reproductive system and dynamics of adaptation to novel conditions may not be driven solely by the level of outcrossing and recombination. This has important implications for studies investigating the evolution of reproductive modes in the context of environmental changes, and for the extent to which their findings can be generalized. Here, we use Caenorhabditis elegans—a free-living nematode species in which hermaphrodites (capable of selfing but not cross-fertilizing each other) coexist with males (capable of fertilizing hermaphrodites)—to investigate the response of wild type as well as obligatorily outcrossing and obligatorily selfing lines to stressfully increased ambient temperature. We found that thermal stress affects fitness of outcrossers much more drastically than that of selfers. This shows that apart from the potential for recombination, the selective pressures imposed by the same environmental change can differ between populations expressing different reproductive systems and affect their adaptive potential.  相似文献   

13.
14.
Genetic interactions can strongly influence the fitness effects of individual mutations, yet the impact of these epistatic interactions on evolutionary dynamics remains poorly understood. Here we investigate the evolutionary role of epistasis over 50,000 generations in a well-studied laboratory evolution experiment in Escherichia coli. The extensive duration of this experiment provides a unique window into the effects of epistasis during long-term adaptation to a constant environment. Guided by analytical results in the weak-mutation limit, we develop a computational framework to assess the compatibility of a given epistatic model with the observed patterns of fitness gain and mutation accumulation through time. We find that a decelerating fitness trajectory alone provides little power to distinguish between competing models, including those that lack any direct epistatic interactions between mutations. However, when combined with the mutation trajectory, these observables place strong constraints on the set of possible models of epistasis, ruling out many existing explanations of the data. Instead, we find that the data are consistent with a “two-epoch” model of adaptation, in which an initial burst of diminishing-returns epistasis is followed by a steady accumulation of mutations under a constant distribution of fitness effects. Our results highlight the need for additional DNA sequencing of these populations, as well as for more sophisticated models of epistasis that are compatible with all of the experimental data.  相似文献   

15.
Biological invasions provide a unique opportunity to investigate rapid adaptation and evolution as the introduced taxa adapt to biogeographic contexts or habitats in which they have not evolved. The capacity of populations to evolve is generally thought to be constrained by their existing heritable genetic variation, which is usually associated with variation in genomic DNA nucleotide sequences. However, there is increasing acceptance that a range of mechanisms—collectively termed ‘epigenetics’ can alter gene function and affect ecologically important traits. Epigenetic processes may mediate adaptive phenotypic plasticity and provide heritable variation on a finer timescale than DNA sequence-based mutations. This review focuses on DNA methylation, a well-studied epigenetic mechanism known to be associated with biological adaptation to environmental stress. We explore the role of DNA methylation in characterising the adaptive potential of invasive species. We also provide an overview of studies focused on DNA methylation and invasive species to date, and identify knowledge gaps and potential ways to advance understanding of epigenetic-based adaptation. A summary of the literature suggests that DNA methylation could play a key role in the success of invasive species. Introduced populations with reduced genetic diversity often display increased DNA methylation variation in comparison with native populations, which could create phenotypic diversity when it is most required. Recent data show that DNA methylation could contribute to adaptation through both phenotypic plasticity and heritable variation, particularly through clonal reproduction. From a methodological perspective, recent advances in molecular techniques provide an exciting opportunity to explore the functional relevance of DNA methylation to successful biological invasions. Gaining a greater understanding of the adaptive and evolutionary processes that contribute to invasion success is critical for preventing and managing the future introduction, establishment and spread of invasive species.  相似文献   

16.
August Krogh counseled the careful selection of the best subject organism on which to undertake mechanistic physiological research. But what if an organism with the desired properties does not exist? It is now within our power to engineer organisms genetically to achieve novel combinations of traits. I propose that it is a logical extension of the Krogh principle that we use biological methodologies to create novel organisms ideally suited for particular physiological studies. Transgenics may first come to mind as the method for such transformations, but here I suggest that an alternative and complementary technique for generating biological novelty is experimental evolution. The latter has several advantages, including modification of multiple characters in one experiment, the production of advantageous traits, the testing of evolutionary hypotheses, and the identification of previously unsuspected factors involved in adaptation. Three experiments are reviewed, each of which examined the evolution of different physiological characters in different environments and organisms: locomotor performance in mice, desiccation tolerance in fruit flies, and high temperature adaptation in bacteria. While diverse in experimental type and subject, all resulted in the successful production of new variants with enhanced function in their new environments. Each experiment successfully tested hypotheses concerning physiological evolution, and in each case, unanticipated results emerged, which suggests previously unsuspected adaptive pathways and mechanisms. In addition, replicate populations in each experiment adjusted to their common environments by several different means, which indicates that physiological evolution may follow diverse stochastic pathways during adaptation. Experimental evolution can be a valuable method to produce and investigate new physiological variants and traits. The choice of experimental subjects, according to the Krogh principle, is no longer limited to currently existing organisms but is open to our imaginations and our ingenuity.  相似文献   

17.
Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics) differentially target wild largemouth bass (Micropterus salmoides) and rock bass (Ambloplites rupestris) based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity) in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes) but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management.  相似文献   

18.
Reciprocal coevolution between host and pathogen is widely seen as a major driver of evolution and biological innovation. Yet, to date, the underlying genetic mechanisms and associated trait functions that are unique to rapid coevolutionary change are generally unknown. We here combined experimental evolution of the bacterial biocontrol agent Bacillus thuringiensis and its nematode host Caenorhabditis elegans with large-scale phenotyping, whole genome analysis, and functional genetics to demonstrate the selective benefit of pathogen virulence and the underlying toxin genes during the adaptation process. We show that: (i) high virulence was specifically favoured during pathogen–host coevolution rather than pathogen one-sided adaptation to a nonchanging host or to an environment without host; (ii) the pathogen genotype BT-679 with known nematocidal toxin genes and high virulence specifically swept to fixation in all of the independent replicate populations under coevolution but only some under one-sided adaptation; (iii) high virulence in the BT-679-dominated populations correlated with elevated copy numbers of the plasmid containing the nematocidal toxin genes; (iv) loss of virulence in a toxin-plasmid lacking BT-679 isolate was reconstituted by genetic reintroduction or external addition of the toxins. We conclude that sustained coevolution is distinct from unidirectional selection in shaping the pathogen''s genome and life history characteristics. To our knowledge, this study is the first to characterize the pathogen genes involved in coevolutionary adaptation in an animal host–pathogen interaction system.  相似文献   

19.
曹家树 《遗传》2010,32(8):791-798
文章从现有主流生物进化理论存在的问题入手, 以生物适应进化原理为认识基础, 讨论生物进化的动力, 以求对生物进化机制有一个新的认识。在薛定谔“生命赖负熵生存”观点的指导下, 提出了“负熵流”包括能量流、物质流和信息流, 以及负熵流是生命生存和发育的动力的观点。作者在原有生物适应进化原理基础上, 修改完善并提出了“DNA、RNA和蛋白质在环境作用下的生物适应进化调控系统”理论, 并根据系统发育是个体发育的“积分”的观点, 推论得出生物与环境的负熵差引起的负熵流也是生命进化的动力, 对生物进化机制作出了新的理解。基于这样的生物进化机制的认识, 提出了“进化是一个子系统在其上一等级系统中, 将自身全部或部分信息遗传给下一代子系统, 并在其适应上一等级系统过程中, 产生一些新质, 终止一些旧质, 从而在其上一等级系统中得以延续的变化过程”的概念, 并探讨了一些与进化有关的其他争议问题。  相似文献   

20.
Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号