首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
卢颖 《微生物学通报》2010,37(7):1061-1064
医学微生物学是医学院校各专业的一门重要基础课程,也是一门较难讲解的课程,针对留学生尤为如此。针对我校留学生在医学微生物学教学中出现的问题,在如何克服语言障碍、选择教材和教学内容、优化教学方法与手段、严格教学管理和考核制度等方面我们做了诸多尝试,现将我们的一些体会和经验与各位同仁共同探讨,以期提高留学生医学微生物学教学水平。  相似文献   

2.
Botanists benefit from a scientifically literate society and an interested and botanically literate student population, and we have opportunities to promote literacy in our classes. Unfortunately, scientific illiteracy exists, in part, because students are technologically advanced but lack intellectual curiosity and rigor. Botanical illiteracy results from several interacting factors, including a lack of interest in plants and infrequent exposure to plant science before students reach college. If scientific or botanical literacy is a goal, we must understand what literacy means and how we can help students reach that goal. A model of biological literacy recognizes four levels; students enter courses at the lowest level possessing misconceptions about concepts; however, misconceptions can be used to our advantage, especially by using concept inventories. Inquiry-based instruction is advocated for all science courses, and learning theory supports inquiry. Seven principles of learning inform recommendations about how botanists should teach, including using themes and "thinking botanically" to illustrate all biological concepts. Overall, consideration of the botanical content taught is less critical than the methods used to teach that content. If botanists emphasize thinking and process skills with an understanding of concepts, we will prepare scientifically literate students and citizens and benefit from our efforts.  相似文献   

3.
Science students increasingly need programming and data science skills to be competitive in the modern workforce. However, at our university (San Francisco State University), until recently, almost no biology, biochemistry, and chemistry students (from here bio/chem students) completed a minor in computer science. To change this, a new minor in computing applications, which is informally known as the Promoting Inclusivity in Computing (PINC) minor, was established in 2016. Here, we present the lessons we learned from our experience in a set of 10 rules. The first 3 rules focus on setting up the program so that it interests students in biology, chemistry, and biochemistry. Rules 4 through 8 focus on how the classes of the program are taught to make them interesting for our students and to provide the students with the support they need. The last 2 rules are about what happens “behind the scenes” of running a program with many people from several departments involved.  相似文献   

4.
The science we practice is shaped by our interactions with people; the enthusiastic teachers, the fascinating mentors, the inspiring colleagues, and the inquisitive students. The science we enjoy takes us into areas we couldn''t have anticipated. From time to time, we come back to reality and try to find ways to share our new explorations with our friends and relatives and to convert our insights into collective progress. What could be a better job?  相似文献   

5.
With advances in sequencing technology, widespread and affordable genome sequencing will soon be a reality. However, studies suggest that "genetic literacy" of the general public is inadequate to prepare our society for this unprecedented access to our genetic information. As the current generation of high school students will come of age in an era when personal genetic information is increasingly utilized in health care, it is of vital importance to ensure these students understand the genetic concepts necessary to make informed medical decisions. These concepts include not only basic scientific knowledge, but also considerations of the ethical, legal, and social issues that will arise in the age of personal genomics. In this article, we review the current state of genetics education, highlight issues that we believe need to be addressed in a comprehensive genetics education curriculum, and describe our education efforts at the Harvard Medical School-based Personal Genetics Education Project.  相似文献   

6.
Imparting a basic understanding of evolutionary principles to students in an active, engaging fashion can be troublesome because the logistics involved in designing experiments where students pose their own questions and use the data to test alternative hypotheses often outstrip time and financial constraints. In recent years, educators have begun publishing exercises that teach evolution using innovative, in-class experiments. This article adds to this growing forum by describing a classroom exercise that introduces the concept of evolution by natural selection in a hypothesis-driven, experimental fashion, using a deck of cards. Our standard exercise is suitable for upper-level high school and introductory biology students at the college level. In this paper, we discuss the exercise in detail and give several examples that illustrate how our games provide accessible bridges to the primary literature. Finally, we discuss how extensions of our basic exercise can be used to effectively teach advanced evolutionary concepts.  相似文献   

7.
The mechanics of breathing has always been a difficult topic for some medical and graduate students. The subject is very quantitative and contains a number of concepts that some students have trouble with, including physical principles such as pressure, flow, volume, resistance, elasticity, and compliance. Apparently, present-day students find the subject more difficult than students of 20 years ago. A possible reason for this is that the teaching of elementary physics in high school and college is now given less emphasis, whereas other topics, such as molecular biology, receive a great deal of attention. Another factor may be that many of us grew up building radios and other such devices, whereas modern students tend to plug in an electronic unit with little idea of its function. Some examples of misconceptions of present-day students who have taken our course are given. To help the weaker students, we now include a primer at the beginning of our handout for the course that covers simple physical principles. Examples of some of the most difficult concepts for students are given.  相似文献   

8.
9.
Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.  相似文献   

10.
生物化学研究生命的化学组成和化学变化等生命基本属性,是阐述生命奥秘的基本语言,是生命科学的基础学科。生物化学能否作为公选课?如果其作为公选课,又应包含哪些生物化学知识,如何讲授这些专业知识?本文从课程内容,教材选取以及授课方式等方面介绍了笔者在向非健康科学专业的学生开设《生物化学》公选课的实践和体会。笔者联系身边的生物化学现象讲解其中的基本生物化学原理,关注疾病发生和临床治疗中涉及的生物化学,整合本校生命和健康相关学科和最前沿的科学进展中涉及到的生物化学知识,极大地增强了学生对生物化学和生命科学的兴趣,有效提高了教学效果;并且为学生理解其它生命科学选修课程打下了良好的基础。这些策略和教学方法对于公选课和通识课,甚至专业课的教学实践,具有一定的参考价值。  相似文献   

11.
When teaching and learning about alveolar ventilation with our class of 300 first-year medical students, we use four simple, inexpensive "models." The models, which encourage research-oriented learning and help our students to understand complex ideas, are distributed to the students before class. The students anticipate something new every day, and the models provide elements of surprise and physical examples and are designed to help students to understand 1) cohesive forces of the intrapleural space, 2) chest wall and lung dynamics, 3) alveolar volumes, and 4) regional differences in ventilation. Students are drawn into discussion by the power of learning that is associated with manipulating and thinking about objects. Specifically, the models encourage thinking about complex interactions, and the students appreciate manipulating objects and actually understanding how they work. Using models also allows us to show students how we think as well as what we know. Finally, students enjoy taking the models home to demonstrate to friends and family "how the body works" as well as use the models as future study aids.  相似文献   

12.
研究生教育作为我国高等教育体制中最高层次的教育,是培养具有高素质、创新型人才的核心环节。医学院校研究生的素 质教育与创新能力是决定其基础医学研究能力和临床专业技能的重要因素,而研究生课程体系的建设是决定研究生培养过程中 重要的一环。为了提高研究生的创新能力,我校对研究生课程体系进行了一系列的改革。通过总结国内外10 所知名院校生物学 专业研究生课程体系的特点,对比分析我校在此方面存在的不足,进一步明确生物学专业研究生培养的目标,并有针对性的提出 课程体系改革的措施,为后续研究生教育改革奠定基础。  相似文献   

13.
Klionsky DJ  Kumar A 《Autophagy》2006,2(1):12-23
With its relevance to our understanding of eukaryotic cell function in the normal and disease state, autophagy is an important topic in modern cell biology; yet, few textbooks discuss autophagy beyond a two- or three-sentence summary. Here, we report an undergraduate/graduate class lesson for the in-depth presentation of autophagy using an active learning approach. By our method, students will work in small groups to solve problems and interpret an actual data set describing genes involved in autophagy. The problem-solving exercises and data set analysis will instill within the students a much greater understanding of the autophagy pathway than can be achieved by simple rote memorization of lecture materials; furthermore, the students will gain a general appreciation of the process by which data are interpreted and eventually formed into an understanding of a given pathway. As the data sets used in these class lessons are largely genomic and complementary in content, students will also understand first-hand the advantage of an integrative or systems biology study: No single data set can be used to define the pathway in full-the information from multiple complementary studies must be integrated in order to recapitulate our present understanding of the pathways mediating autophagy. In total, our teaching methodology offers an effective presentation of autophagy as well as a general template for the discussion of nearly any signaling pathway within the eukaryotic kingdom.  相似文献   

14.
生物化学是医学专业的主干课程,也是临床医学专业留学生的必修课程。在留学生生物化学教学中,我们根据留学生特点,在师资队伍建设、考试评价机制、教学方法和手段等方面进行了一些探索,建立了适合留学生的中外融合的教学模式。本文就此进行总结,以期提高留学生教学质量。  相似文献   

15.
Abstract

I have attempted to acquaint the reader with the pressing need to accurately identify the important kinds of intellectual and expressive behaviors evident in the act of expressive forming, point out some failures in our recent efforts to do that, and suggest some institutional policies necessary for achieving that goal in ways supportive of our students and our programs. In addition, I have offered some suggestions for how we can make our cognitive claims more evident by encouraging more intelligent art learning in schools—by, for example, deciding what students really need to be able to know and be able to do in the arts and how authentically we can assess their achievements. Finally, I have urged that the whole process speak to the educational importance of aesthetic objects, which express artistic qualities, have specific aesthetic value, reflect human motivations, and are both cognitive and emotional in nature. It is all done in the pursuit of a practice that is in itself fulfilling because it satisfies the expressed needs and cultural functions of a real world.  相似文献   

16.
We redesigned our intermediate-level organismal physiology laboratory course to center on student-designed experiments in plant and human physiology. Our primary goals were to improve the ability of students to design experiments and analyze data. We assessed these abilities at the beginning and end of the semester by giving students an evaluation tool consisting of an experimental scenario, data, and four questions of increasing complexity. To control for nontreatment influences, the improvement scores (final minus initial score for each question) of students taking both the laboratory and the companion lecture course were compared with those of students taking the lecture course only. The laboratory + lecture group improved more than the lecture-only group for the most challenging question. This evidence suggests that our inquiry-based curriculum is achieving its primary goals. The evaluation tool that we developed may be useful to others interested in measuring experimental analysis abilities in their students.  相似文献   

17.
Students have specific learning style preferences, and these preferences may be different between male and female students. Understanding a student's learning style preference is an important consideration when designing classroom instruction. Therefore, we administered the visual, auditory, reading/writing, kinesthetic (VARK) learning preferences questionnaire to our first-year medical students; 38.8% (97 of 250 students) of the students returned the completed questionnaire. Both male (56.1%) and female (56.7%) students preferred multiple modes of information presentation, and the numbers and types of modality combinations were not significantly different between genders. Although not significantly different, the female student population tended to be more diverse than the male population, encompassing a broader range of sensory modality combinations within their preference profiles. Instructors need to be cognizant of these differences and broaden their range of presentation styles accordingly.  相似文献   

18.
《Autophagy》2013,9(1):12-23
With its relevance to our understanding of eukaryotic cell function in the normal and disease state, autophagy is an important topic in modern cell biology; yet, few textbooks discuss autophagy beyond a two- or three-sentence summary. Here, we report an undergraduate/graduate class lesson for the in-depth presentation of autophagy using an active learning approach. By our method, students will work in small groups to solve problems and interpret an actual data set describing genes involved in autophagy. The problem-solving exercises and data set analysis will instill within the students a much greater understanding of the autophagy pathway than can be achieved by simple rote memorization of lecture materials; furthermore, the students will gain a general appreciation of the process by which data are interpreted and eventually formed into an understanding of a given pathway. As the data sets used in these class lessons are largely genomic and complementary in content, students will also understand first-hand the advantage of an integrative or systems biology study: No single data set can be used to define the pathway in full æ the information from multiple complementary studies must be integrated in order to recapitulate our present understanding of the pathways mediating autophagy. In total, our teaching methodology offers an effective presentation of autophagy as well as a general template for the discussion of nearly any signaling pathway within the eukaryotic kingdom.  相似文献   

19.
大学全英文教授<动物学>探索   总被引:2,自引:0,他引:2  
涂知明 《四川动物》2003,22(4):266-267
为配合教学改革的需要,首次在本科生中试行《动物学》全英文教学。针对一年级学生的英语水平和特点,结合《动物学》课程的特性,在课堂教学中合理运用多媒体技术,调动学生学习积极性,激发学生兴趣,因而提高了学习效率。  相似文献   

20.
We present here an outline of the lectures and laboratory exercises for undergraduate developmental biology students at the University of Tokyo. The main aim of our course is to help students fill the gap between natural history, classical embryology and molecular developmental biology. To achieve this aim, we take up various topics in the lectures, from fertilization and early development to developmental engineering. Our laboratory exercises begin with an introduction to the natural history of the organism. The entire class and the instructors collect newts in the field and discuss features of their mating behavior and so on. In the laboratory, students are absorbed by exercises such as a lampbrush chromosome preparation and an in vitro beating heart induction. After that, students choose their own research projects for which they will employ both classical embryological and modern molecular biological techniques. At the end of our course, the connectivity principle from field to gel blot will be part of the students' understanding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号