首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resistance exercise training results in an increase inmuscle wet mass and protein content. To begin to address the acute changes following a single bout of high-resistance exercise, a newmodel has been developed. Training rats twice a week for 6 wk resultedin 13.9 and 14.4% hypertrophy in the extensor digitorum longus (EDL)and tibialis anterior (TA) muscles, respectively. Polysome profilesafter high-resistance lengthening contractions suggest that the rate ofinitiation is increased. The activity of the 70-kDa S6 protein kinase(p70S6k), a regulator oftranslation initiation, is also increased following high-resistancelengthening contractions (TA, 363 ± 29%; EDL, 353 ± 39%).Furthermore, the increase inp70S6k activity 6 h after exercisecorrelates with the percent change in muscle mass after 6 wk oftraining (r = 0.998). The tightcorrelation between the activation ofp70S6k and the long-term increasein muscle mass suggests thatp70S6k phosphorylation may be agood marker for the phenotypic changes that characterize musclehypertrophy and may play a role in load-induced skeletal muscle growth.

  相似文献   

2.
We have recently reported that the beta-adrenergic agonist isoproterenol regulates the alveolar epithelial cell Na-K-ATPase via MAPK/extracellular signal-regulated kinase and rapamycin-sensitive pathways. Here we report that isoproterenol phosphorylated the protein S6 kinase (p70S6k) in alveolar epithelial cells, which was inhibited by both rapamycin and the MEK1/2 inhibitor U-0126. In alveolar epithelial cells transfected with a p70S6k dominant negative construct, isoproterenol did not increase Na-K-ATPase total protein expression, whereas in cells transfected with a rapamycin-resistant mutant, the isoproterenol-mediated increase in Na-K-ATPase was not prevented by rapamycin. Accordingly, we provide here first evidence that isoproterenol regulates Na-K-ATPase via p70S6k in alveolar epithelial cells.  相似文献   

3.
4.
We report here for the first time that the specific MAPK kinase (MEK) inhibitor, PD-98059, completely knocked out granulocyte-macrophage colony-stimulating factor (GM-CSF)-stimulated MAPK activity but also partially inactivated the ribosomal kinase p70S6K. Since a connection between the two major signaling pathways, Ras/MEK/MAPK and PI3-K/p70S6K was suspected, experiments were designed to prove a molecular crosstalk between those. First, p70S6K protein could be co-immunoprecipitated with anti-MAPK antibodies, MAPK protein was similarly present in anti-p70S6K immunoprecipitates, indicating close spatial proximity of both signaling molecules. Second, p70S6K enzymatic activity was found in anti-MAPK immunoprecipitates and MAPK in anti-p70S6K immunoprecipitates, being the latter activity higher in samples derived from GM-CSF-treated cells. Since an upstream activator of p70S6K, phosphatidylinositol (PI)3-kinase, has been associated to cell movement in phagocytic cells, we studied a possible participation of p70S6K in chemotaxis and whether MAPK had an input. Our data show that functional chemotaxis was inhibited by rapamycin, a specific p70S6K inhibitor, as well as by PD-98059. Thus, a connection between these two kinases extends from the molecular level to cell migration, a key functionality in non-proliferative, mature phagocytes such as neutrophils.  相似文献   

5.
6.
S6K (ribosomal S6 kinase p70, p70S6K) activation requires phosphorylation at two stages. The first phosphorylation is independent of insulin stimulation and mediated by an unknown kinase. The second phosphorylation is mediated by mTOR in insulin dependent manner. In this study, we identified JNK1 (c-Jun N-terminal kinase 1) as a kinase in the first phosphorylation. S6K protein was phosphorylated by JNK1 at S411 and S424 in the carboxyl terminal autoinhibitory domain. The phosphorylation was observed in kinase assay with purified S6K as a substrate, and in cells after JNK1 activation by TNF-α or MEKK1 expression. The phosphorylation was detected in JNK2 null cells, but not in JNK1 null cells after TNF-α treatment. When JNK1 activation was inhibited by MKK7 knockdown, the phosphorylation was blocked in cells. The phosphorylation led to S6K protein degradation in NF-κB deficient cells. The degradation was blocked by inhibition of proteasome activity with MG132. In wide type cells, the phosphorylation did not promote S6K degradation when IKK2 (IKKβ, IκB kinase beta) was activated. Instead, the phosphorylation allowed S6K activation by mTOR, which stabilizes S6K protein. In IKK2 null cells or cells treated by IKK2 inhibitor, the phosphorylation led to S6K degradation. These data suggest that S6K is phosphorylated by JNK1 and the phosphorylation makes S6K protein unstable in the absence of IKK2 activation. This study provides a mechanism for regulation of S6K protein stability.  相似文献   

7.
8.
The insulin receptor substrate-1 (IRS1) is phosphorylated on serine 307 (human sequence, corresponding to murine serine 302) in response to insulin as part of a feedback loop that controls IRS1 phosphorylation on tyrosine residues by the insulin receptor. This in turn directly affects downstream signaling and is in human adipocytes implicated in the pathogenesis of insulin resistance and type 2 diabetes. The phosphorylation is inhibited by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR) in complex with raptor (mTORC1). The mTORC1-downstream p70 ribosomal protein S6 kinase (S6K1), which is activated by insulin, can phosphorylate IRS1 at serine 307 in vitro and is considered the physiological protein kinase. Because the IRS1 serine 307-kinase catalyzes a critical step in the control of insulin signaling and constitutes a potential target for treatment of insulin resistance, it is important to know whether S6K1 is the physiological serine 307-kinase or not. We report that, by several criteria, S6K1 does not phosphorylate IRS1 at serine 307 in response to insulin in intact human primary adipocytes: (i) The time-courses for phosphorylation of S6K1 and its phosphorylation of S6 are not compatible with the phosphorylation of IRS1 at serine 307; (ii) A dominant-negative construct of S6K1 inhibits the phosphorylation of S6, without effect on the phosphorylation of IRS1 at serine 307; (iii) The specific inhibitor of S6K1 PF-4708671 inhibits the phosphorylation of S6, without effect on phosphorylation of IRS1 at serine 307. mTOR-immunoprecipitates from insulin-stimulated adipocytes contains an unidentified protein kinase specific for phosphorylation of IRS1 at serine 307, but it is not mTOR or S6K1.  相似文献   

9.
p70 ribosomal S6 kinase (p70S6K) is a downstream effector of the mTOR signaling pathway involved in cell proliferation, cell growth, cell-cycle progression, and glucose homeostasis. Multiple phosphorylation events within the catalytic, autoinhibitory, and hydrophobic motif domains contribute to the regulation of p70S6K. We report the crystal structures of the kinase domain of p70S6K1 bound to staurosporine in both the unphosphorylated state and in the 3′-phosphoinositide-dependent kinase-1-phosphorylated state in which Thr-252 of the activation loop is phosphorylated. Unphosphorylated p70S6K1 exists in two crystal forms, one in which the p70S6K1 kinase domain exists as a monomer and the other as a domain-swapped dimer. The crystal structure of the partially activated kinase domain that is phosphorylated within the activation loop reveals conformational ordering of the activation loop that is consistent with a role in activation. The structures offer insights into the structural basis of the 3′-phosphoinositide-dependent kinase-1-induced activation of p70S6K and provide a platform for the rational structure-guided design of specific p70S6K inhibitors.  相似文献   

10.
11.
《Autophagy》2013,9(1):59-61
A paper by Scott et al.,1 suggested that p70S6 kinase (p70S6k) is a positive regulatory factor for autophagy. This finding is in contrast to previous data suggesting a negative role for this factor. The Scott et al. article was highlighted in Nature News & Views,2 which elicited a commentary by A.J. Meijer and P. Codogno. These authors present an alternate model for the role of p70S6k in autophagic induction, although still as a positive factor. Following the initial commentary is a response by T.P. Neufeld and R.C. Scott.  相似文献   

12.
Klionsky DJ  Meijer AJ  Codogno P 《Autophagy》2005,1(1):59-60; discussion 60-1
  相似文献   

13.
H Shima  M Pende  Y Chen  S Fumagalli  G Thomas    S C Kozma 《The EMBO journal》1998,17(22):6649-6659
Recent studies have shown that the p70(s6k)/p85(s6k) signaling pathway plays a critical role in cell growth by modulating the translation of a family of mRNAs termed 5'TOPs, which encode components of the protein synthetic apparatus. Here we demonstrate that homozygous disruption of the p70(s6k)/p85(s6k) gene does not affect viability or fertility of mice, but that it has a significant effect on animal growth, especially during embryogenesis. Surprisingly, S6 phosphorylation in liver or in fibroblasts from p70(s6k)/p85(s6k)-deficient mice proceeds normally in response to mitogen stimulation. Furthermore, serum-induced S6 phosphorylation and translational up-regulation of 5'TOP mRNAs were equally sensitive to the inhibitory effects of rapamycin in mouse embryo fibroblasts derived from p70(s6k)/p85(s6k)-deficient and wild-type mice. A search of public databases identified a novel p70(s6k)/p85(s6k) homolog which contains the same regulatory motifs and phosphorylation sites known to control kinase activity. This newly identified gene product, termed S6K2, is ubiquitously expressed and displays both mitogen-dependent and rapamycin-sensitive S6 kinase activity. More striking, in p70(s6k)/p85(s6k)-deficient mice, the S6K2 gene is up-regulated in all tissues examined, especially in thymus, a main target of rapamycin action. The finding of a new S6 kinase gene, which can partly compensate for p70(s6k)/p85(s6k) function, underscores the importance of S6K function in cell growth.  相似文献   

14.
In previousstudies we have shown that rat adipocytes suspended in Matrigel andplaced in primary culture migrate through the gel to form multicellularclusters over a 5- to 6-day period. In the present study,phosphorylation of the insulin-regulated 70-kDa ribosomal protein S6kinase (p70S6k) was observedwithin 30 min of establishment of adipocytes in primary culture. Twoinhibitors of the p70S6ksignaling pathway, rapamycin and LY-294002, greatly reducedphosphorylation of p70S6k andorganization of adipocytes into multicellular clusters. Of all thecomponents of the cell culture medium, amino acids, and in particular asubset of neutral amino acids, were found to promote bothphosphorylation of p70S6k andcluster formation. Lowering the concentrations of amino acids in themedium to levels approximating those in plasma of fasted rats decreasedboth phosphorylation of p70S6kand cluster formation. Furthermore, stimulation ofp70S6k phosphorylation by aminoacids was prevented by either rapamycin or LY-294002. These findingsdemonstrate that amino acids stimulate thep70S6k signaling pathway inadipocytes and imply a role for this pathway in multicellularclustering.

  相似文献   

15.
16.
The signals generated by the IFNgamma receptor to initiate mRNA translation and generation of protein products that mediate IFNgamma responses are largely unknown. In the present study, we provide evidence for the existence of an IFNgamma-dependent signaling cascade activated downstream of the phosphatidylinositol (PI) 3'-kinase, involving the mammalian target of rapamycin (mTOR) and the p70 S6 kinase. Our data demonstrate that p70 S6K is rapidly phosphorylated and activated during engagement of the IFNgamma receptor in sensitive cell lines. Such activation of p70 S6 kinase is blocked by pharmacological inhibitors of the PI 3' kinase and mTOR, and is abrogated in double-knockout mouse embryonic fibroblasts for the alpha and beta isoforms of the p85 regulatory subunit of the PI 3'-kinase. The IFNgamma-activated p70 S6 kinase subsequently phosphorylates the 40S S6 ribosomal protein on serines 235/236, to regulate IFNgamma-dependent mRNA translation. In addition to phosphorylation of 40S ribosomal protein, IFNgamma also induces phosphorylation of the 4E-BP1 repressor of mRNA translation on threonines 37/46, threonine 70, and serine 65, sites whose phosphorylation is required for the inactivation of 4E-BP1 and its dissociation from the eukaryotic initiation factor-4E (eIF4E) complex. Thus, engagement of the PI 3'-kinase and mTOR by the IFNgamma receptor results in the generation of two distinct signals that play roles in the initiation of mRNA translation, suggesting an important role for this pathway in IFNgamma signaling.  相似文献   

17.
With age, skeletal muscle experiences substantial atrophy and weakness. Although resistance training can increase muscle size and strength, the myogenic response to exercise and the capacity for muscle hypertrophy in older humans and animals is limited. In the present study, we assessed the ability of muscle contractile activity to activate cellular pathways involved in muscle cell growth and myogenesis in adult (Y; 6 mo old) and aged (O; 30 mo old) Fischer 344 x Brown Norway rats. A single bout of rat hindlimb muscle contractile activity was elicited by high-frequency electrical stimulation (HFES) of the sciatic nerve. Plantaris (Pla) and tibialis anterior (TA) muscles were assayed for mammalian target of rapamycin (mTOR), 70-kDa ribosomal protein S6 kinase (p70(S6K)), and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and total protein either at baseline, immediately after, or 6 h after HFES. mTOR phosphorylation was elevated in Pla (1.3 +/- 0.3-fold, P < 0.05) immediately after HFES and to a lesser extent 6 h after HFES (0.6 +/- 0.1-fold, P < 0.05) in O rats. Post-HFES, p70(S6K) phosphorylation increased 1.2 +/- 0.3-fold in TA (P < 0.05) and remained elevated 6 h later (0.6 +/- 0.2-fold, P < 0.05) in O rats. ERK phosphorylation was lower in O rats immediately after exercise in both TA (11.1 +/- 2.9 vs. 2.1 +/- 0.5-fold, P < 0.05) and Pla (6.5 +/- 1.5 vs. 1.8 +/- 0.5-fold, P < 0.05) and returned to baseline by 6 h in both Y and O rats. Phosphorylation of mTOR, p70(S6K), and ERK1/2 are increased in skeletal muscle after a single bout of in situ muscle contractile activity in aged animals, and the response is less than that observed in adult animals. These observations suggest that the anabolic response to a single bout of contraction is attenuated with aging and may help explain the reduced capacity for hypertrophy in aged animals.  相似文献   

18.
The mammalian target of rapamycin (mTOR) coordinates cell growth with the growth factor and nutrient/energy status of the cell. The phosphatidylinositol 3-kinase-AKT pathway is centrally involved in the transmission of mitogenic signals to mTOR. Previous studies have shown that mTOR is a direct substrate for the AKT kinase and identified Ser-2448 as the AKT target site in mTOR. In this study, we demonstrate that rapamycin, a specific inhibitor of mTOR function, blocks serum-stimulated Ser-2448 phosphorylation and that this drug effect is not explained by the inhibition of AKT. Furthermore, the phosphorylation of Ser-2448 was dependent on mTOR kinase activity, suggesting that mTOR itself or a protein kinase downstream from mTOR was responsible for the modification of Ser-2448. Here we show that p70S6 kinase phosphorylates mTOR at Ser-2448 in vitro and that ectopic expression of rapamycin-resistant p70S6 kinase restores Ser-2448 phosphorylation in rapamycin-treated cells. In addition, we show that cellular amino acid status, which modulates p70S6 kinase (S6K1) activity via the TSC/Rheb pathway, regulates Ser-2448 phosphorylation. Finally, small interfering RNA-mediated depletion of p70S6 kinase reduces Ser-2448 phosphorylation in cells. Taken together, these results suggest that p70S6 kinase is a major effector of mTOR phosphorylation at Ser-2448 in response to both mitogen- and nutrient-derived stimuli.  相似文献   

19.
20.
The activation of p70s6k is associated with multiple phosphorylations at two sets of sites. The first set, S411, S418, T421, and S424, reside within the autoinhibitory domain, and each contains a hydrophobic residue at -2 and a proline at +1. The second set of sites, T229 (in the catalytic domain) and T389 and S404 (in the linker region), are rapamycin sensitive and flanked by bulky aromatic residues. Here we describe the identification and mutational analysis of three new phosphorylation sites, T367, S371, and T447, all of which have a recognition motif similar to that of the first set of sites. A mutation of T367 or T447 to either alanine or glutamic acid had no apparent effect on p70s6k activity, whereas similar mutations of S371 abolished kinase activity. Of these three sites and their surrounding motifs, only S371 is conserved in p70s6k homologs from Drosophila melanogaster, Arabidopsis thaliana, and Saccharomyces cerevisiae, as well as many members of the protein kinase C family. Serum stimulation increased S371 phosphorylation; unlike the situation for specific members of the protein kinase C family, where the homologous site is regulated by autophosphorylation, S371 phosphorylation is regulated by an external mechanism. Phosphopeptide analysis of S371 mutants further revealed that the loss of activity in these variants was paralleled by a block in serum-induced T389 phosphorylation, a phosphorylation site previously shown to be essential for kinase activity. Nevertheless, the substitution of an acidic residue at T389, which mimics phosphorylation at this site, did not rescue mutant p70s6k activity, indicating that S371 phosphorylation plays an independent role in regulating intrinsic kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号