首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Growth hormone receptor (GHR), the cognate receptor of growth hormone (GH), is a membrane bound receptor that belongs to the class I cytokine receptor superfamily. GH binding GHR induces cell differentiation and maturation, initiates the anabolism inside the cells and promotes cell proliferation. Recently, GHR has been reported to be associated with various types of cancer. However, the underlying mechanism of GHR in gastric cancer has not been defined. Our results showed that silence of GHR inhibited the growth of SGC-7901 and MGC-803 cells, and tumour development in mouse xenograft model. Flow cytometry showed that GHR knockout significantly stimulated gastric cancer cell apoptosis and caused G1 cell cycle arrest, which was also verified by Western blot that GHR deficiency induced the protein level of cleaved-PARP, a valuable marker of apoptosis. In addition, GHR deficiency inhibited the activation of PI3K/AKT signalling pathway. On the basis of the results, that GHR regulates gastric cancer cell growth and apoptosis through controlling G1 cell cycle progression via mediating PI3K/AKT signalling pathway. These findings provide a novel understanding for the role of GHR in gastric cancer.  相似文献   

3.
4.
5.
We have investigated trafficking of two negative regulators of growth hormone receptor (GHR) signaling: a human, truncated receptor, GHR1-279, and a GH antagonist, B2036. Fluorescent-labeled growth hormone (GH) was rapidly internalized by the full-length GHR, with >80% of the hormone internalized within 5 min of exposure to GH. In contrast, <5% of labeled GH was internalized by cells expressing truncated GHR1-279. Using another truncated receptor, GHR1-317 fused to enhanced green fluorescent protein (EGFP), we have exploited fluorescence energy transfer to monitor the trafficking of ligand-receptor complexes. The data confirmed that internalization of this truncated receptor is very inefficient. It was possible to visualize the truncated GHR1-317-EGFP packaged in the endoplasmic reticulum, its rapid movement in membrane bound vesicles to the Golgi apparatus, and subsequent transport to the cell membrane. The GH antagonist, B2036, blocked Jak2-Stat5-mediated GHR signaling but was internalized with a similar time course to native GH. The results: 1) demonstrate the rapid internalization of GH when studied under physiological conditions; 2) confirm the hypothesis that internalization of cytoplasmic domain truncated human GHRs is very inefficient, which explains their dominant negative action; and 3) show that the antagonist action of B2036 is independent of receptor internalization.  相似文献   

6.
7.
The cytokine-inducible SH2 domain-containing protein CIS inhibits signaling from the growth hormone (GH) receptor (GHR) to STAT5b by a proteasome-dependent mechanism. Here, we used the GH-responsive rat liver cell line CWSV-1 to investigate the role of CIS and the proteasome in GH-induced GHR internalization. Cell-surface GHR localization and internalization were monitored in GH-stimulated cells by confocal immunofluorescence microscopy using an antibody directed against the GHR extracellular domain. In GH na?ve cells, GHR was detected in small, randomly distributed granules on the cell surface and in the cytoplasm, with accumulation in the perinuclear area. GH treatment induced a rapid (within 5 min) internalization of GH.GHR complexes, which coincided with the onset of GHR tyrosine phosphorylation and the appearance in the cytosol of distinct granular structures containing internalized GH. GHR signaling to STAT5b continued for approximately 30-40 min, however, indicating that GHR signaling and deactivation of the GH.GHR complex both proceed from an intracellular compartment. The internalization of GH and GHR was inhibited by CIS-R107K, a dominant-negative SH2 domain mutant of CIS, and by the proteasome inhibitors MG132 and epoxomicin, which prolong GHR signaling to STAT5b. GH pulse-chase studies established that the internalized GH.GHR complexes did not recycle back to the cell surface in significant amounts under these conditions. Given the established specificity of CIS-R107K for blocking the GHR signaling inhibitory actions of CIS, but not those of other SOCS/CIS family members, these findings implicate CIS and the proteasome in the control of GHR internalization following receptor activation and suggest that CIS-dependent receptor internalization is a prerequisite for efficient termination of GHR signaling.  相似文献   

8.
9.
Growth hormone (GH) binding to its receptor (GHR) initiates GH-dependent signal transduction and internalization pathways to generate the biological effects. The precise role and way of action of GH on mitochondrial function are not yet fully understood. We show here that GH can stimulate cellular oxygen consumption in CHO cells transfected with cDNA coding for the full-length GHR. By using different GHR cDNA constructs, we succeeded in determining the different parts of the GHR implicated in the mitochondrial response to GH. Polarography and two-photon excitation fluorescence microscopy analysis showed that the Box 1 of the GHR intracellular domain was required for an activation of the mitochondrial respiration in response to a GH exposure. However, confocal laser scanning microscopy demonstrated that cells lacking the GHR Box 1 could efficiently internalize the hormone. We demonstrated that internalization mediated either by clathrin-coated pits or by caveolae was able to regulate GH mitochondrial effect: these two pathways are both essential to obtain the GH stimulatory action on mitochondrial function. Moreover, electron microscopic and biochemical approaches allowed us to identify the caveolar pathway as essential for targeting GH and GHR to mitochondria.  相似文献   

10.
Melanoma is the most aggressive skin cancer. Its aggressiveness is most commonly attributed to ERK pathway mutations leading to constitutive signaling. Though initial tumor regression results from targeting this pathway, resistance often emerges. Interestingly, interrogation of the NCI-60 database indicates high growth hormone receptor (GHR) expression in melanoma cell lines. To further characterize melanoma, we tested responsiveness to human growth hormone (GH). GH treatment resulted in GHR signaling and increased invasion and migration, which was inhibited by a GHR monoclonal antibody (mAb) antagonist in WM35, SK-MEL 5, SK-MEL 28 and SK-MEL 119 cell lines. We also detected GH in the conditioned medium (CM) of human melanoma cell lines. GHR, JAK2 and STAT5 were basally phosphorylated in these cell lines, consistent with autocrine/paracrine GH production. Together, our results suggest that melanomas are enriched in GHR and produce GH that acts in an autocrine/paracrine manner. We suggest that GHR may constitute a therapeutic target in melanoma.  相似文献   

11.
12.
13.
Growth hormone (GH) initiates its cellular action by properly dimerizing GH receptor (GHR). A substantial fraction of circulating GH is complexed with a high-affinity GH-binding protein (GHBP) that in many species can be generated by GHR proteolysis and shedding of the receptor's ligand-binding extracellular domain. We previously showed that this proteolysis 1) can be acutely promoted by the phorbol ester phorbol 12-myristate 13-acetate (PMA), 2) requires a metalloprotease activity, 3) generates both shed GHBP and a membrane-associated GHR transmembrane/cytoplasmic domain remnant, and 4) results in down-regulation of GHR abundance and GH signaling. Using cell culture model systems, we now explore the effects of GH treatment on inducible GHR proteolysis and GHBP shedding. In human IM-9 lymphocytes, which endogenously express GHRs, and in Chinese hamster ovary cells heterologously expressing wild-type or cytoplasmic domain internal deletion mutant rabbit GHRs, brief exposure to GH inhibited PMA-induced GHR proteolysis (receptor loss and remnant accumulation) by 60-93%. PMA-induced shedding of GHBP from Chinese hamster ovary transfectants was also inhibited by 70% in the presence of GH. The capacity of GH to inhibit inducible GHR cleavage did not rely on JAK2-dependent GH signaling, as evidenced by its continued protection in JAK2-deficient gamma2A rabbit GHR cells. The GH concentration dependence for inhibition of PMA-induced GHR proteolysis paralleled that for its promotion of receptor dimerization (as monitored by formation of GHR disulfide linkage). Unlike GH, the GH antagonist, G120K, which binds to but fails to properly dimerize GHRs, alone did not protect against PMA-induced GHR proteolysis; G120K did, however, antagonize the protective effect of GH. Our data suggest that GH inhibits PMA-induced GHR proteolysis and GHBP shedding by inducing GHR dimerization and that this effect does not appear to be related to GH site 1 binding, GHR internalization, or GHR signaling. The implications of these findings with regard to GH signaling and GHR down-regulation are discussed.  相似文献   

14.
15.
16.
Growth hormone (GH) signaling is required for promoting longitudinal body growth, stem cell activation, differentiation, and survival and for regulation of metabolism. Failure to adequately regulate GH signaling leads to disease: excessive GH signaling has been connected to cancer, and GH insensitivity has been reported in cachexia patients. Since its discovery in 1989, the receptor has served a pivotal role as the prototype cytokine receptor both structurally and functionally. Phosphorylation and ubiquitylation regulate the GH receptor (GHR) at the cell surface: two ubiquitin ligases (SCFβTrCP2 and CHIP) determine the GH responsiveness of cells by controlling its endocytosis, whereas JAK2 initiates the JAK/STAT pathway. We used blue native electrophoresis to identify phosphorylated and ubiquitylated receptor intermediates. We show that GHRs occur as ∼500-kDa complexes that dimerize into active ∼900-kDa complexes upon GH binding. The dimerized complexes act as platforms for transient interaction with JAK2 and ubiquitin ligases. If GH and receptors are made in the same cell (autocrine mode), only limited numbers of ∼900-kDa complexes are formed. The experiments reveal the dynamic changes in post-translational modifications during GH-induced signaling events and show that relatively simple cytokine receptors like GHRs are able to form higher order protein complexes. Insight in the complex formation of cytokine receptors is crucially important for engineering cytokines that control ligand-induced cell responses and for generating a new class of therapeutic agents for a wide range of diseases.  相似文献   

17.
18.
The ubiquitin conjugation system is involved in ligand-induced endocytosis of the growth hormone receptor (GHR) via a cytosolic 10-amino acid ubiquitin-dependent endocytosis motif. Herein, we demonstrate that the proteasome is also involved in growth hormone receptor down-regulation. Ligand-induced degradation was blocked in the presence of specific proteasomal inhibitors. In addition, growth hormone (GH) internalization was inhibited, whereas the transferrin receptor cycle remained unaffected. A truncated GHR entered the cells independent of proteasome action. In addition, we show that GH internalization is independent of the presence of lysine residues in the cytosolic domain of the receptor, whereas its internalization can still be inhibited by proteasomal inhibitors. Thus, GHR internalization requires proteasome action in addition to an active ubiquitin conjugation system, but ubiquitination of the GHR itself seems not to be required.  相似文献   

19.
We previously reported on an X-linked SCID (X-SCID) patient, who also had peripheral growth hormone (GH) hyporesponsiveness and abnormalities of the protein phosphorylation events following GH receptor (GHR) stimulation. In the present study, we examined a potential role of common cytokine receptor gamma-chain (gammac) in GHR signaling using EBV-transformed lymphocytes from healthy subjects and gammac-negative X-SCID patients. We demonstrated that the proliferative response to GH stimulation of the B cell lines of gammac-negative patients was impaired despite a comparable cellular expression of GHR molecules to controls. In patients, after GH stimulation, no phosphorylation of STAT5 was observed. In addition, the molecule localization through confocal microscopy revealed that in B cell lines of patients no nuclear translocation of STAT5b following GH stimulation occurred differently from controls. Biochemical analysis of the nuclear extracts of gammac-negative cell lines provided further evidence that the amount of STAT5b and its phosphorylated form did not increase following GH stimulation. In patients, cells reconstituted with wild-type gammac abnormal biochemical and functional events were restored resulting in nuclear translocation of STAT5. Confocal experiments revealed that GHR and gammac were colocalized on the cell membrane. Our study demonstrates the existence of a previously unappreciated relationship between GHR-signaling pathway and gammac, which is required for the activation of STAT5b in B cell lines. These data also confirm that growth failure in X-SCID is primarily related to the genetic alteration of the IL2RG gene.  相似文献   

20.
Growth hormone (GH) plays important roles in a vast array of physiological processes, including growth, metabolism, and reproduction. In this study, cDNAs for two unique growth hormone receptor variants were cloned and sequenced from rainbow trout. The two cDNAs, one consisting of 2920 bp and the other of 2820 bp, share 87.2% identity in nucleotide sequence and 85.5% identity in deduced amino acid sequence and presumably arose through gene duplication. The cDNAs encode for putative 593- and 594-amino acid growth hormone receptors (designated GHR1 and GHR2, respectively), each containing a single transmembrane domain and other motifs characteristic of the receptor family. Both GHR1 and GHR2 mRNAs were present in all tissues examined. Trout GHR mRNAs are differentially expressed, both in terms of abundance among tissues and in terms of abundance within selected tissues. GHR1 was more abundant than GHR2 in the brain, whereas GHR2 was more abundant than GHR1 in pancreas and spleen. These findings expand our understanding of the evolution of the GH receptor family and suggest that independent mechanisms serve to regulate the tissue-specific expression of GHR mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号