共查询到20条相似文献,搜索用时 0 毫秒
1.
Gry Kalstad L?nne Katarzyna Chmielarska Masoumi Johan Lennartsson Christer Larsson 《The Journal of biological chemistry》2009,284(48):33456-33465
Mechanisms that mediate apoptosis resistance are attractive therapeutic targets for cancer. Protein kinase Cδ (PKCδ) is considered a pro-apoptotic factor in many cell types. In breast cancer, however, it has shown both pro-survival and pro-apoptotic effects. Here, we report for the first time that down-regulation of PKCδ per se leads to apoptosis of MDA-MB-231 cells. Inhibition of MEK1/2 by either PD98059 or U0126 suppressed the induction of apoptosis of PKCδ-depleted MDA-MB-231 cells but did not support survival of MCF-7 or MDA-MB-468 cells. Basal ERK1/2 phosphorylation was substantially higher in MDA-MB-231 cells than in the other cell lines. PKCδ depletion led to even higher ERK1/2 phosphorylation levels and also to lower expression levels of the ERK1/2 phosphatase MKP3. Depletion of MKP3 led to apoptosis and higher levels of ERK1/2 phosphorylation, suggesting that this may be a mechanism mediating the effect of PKCδ down-regulation. However, PKCδ silencing also induced increased MEK1/2 phosphorylation, indicating that PKCδ regulates ERK1/2 phosphorylation both upstream and downstream. Moreover, PKCδ silencing led to increased levels of the E3 ubiquitin ligase Nedd4, which is a potential regulator of MKP3, because down-regulation led to increased MKP3 levels. Our results highlight PKCδ as a potential target for therapy of breast cancers with high activity of the ERK1/2 pathway. 相似文献
2.
3.
4.
To clarify the response of leptomeningeal cells to immune stimulation, the effect of lipopolysaccharide (LPS) on expression
of IL-6 receptors in the cultured leptomeningeal cells was investigated. The results showed that the expression of IL-6Rα
was invisible in the purified leptomeningeal cells while it was seen in the cells when they were co-cultured with astrocytes.
On the other hand, GP130 was moderately expressed in both conditions. Following incubation with different doses of LPS, IL-6Rα
expression in purified leptomeningeal cells was increased in a time- and dose-dependent manner, while GP130 level remained
unchanged. Concomitantly, phosphorylated ERK1/2 level was increased following LPS stimulation and its inhibition by PD98059
attenuated the LPS-induced increase of IL-6Rα expression. These data indicate that leptomeningeal cells can respond to immunogenic
stimuli as manifested by expression of cytokine receptors. Moreover, ERK1/2 pathway seems to be involved in the process of
LPS-induced IL-6Rα up-regulation in leptomeningeal cells. 相似文献
5.
SD Smith M Enge W Bao M Thullberg TD Costa H Olofsson B Gashi G Selivanova S Strömblad 《The Journal of biological chemistry》2012,287(35):29336-29347
Protein kinase C α (PKCα) is overexpressed in numerous types of cancer. Importantly, PKCα has been linked to metastasis of malignant melanoma in patients. However, it has been unclear how PKCα may be regulated and how it exerts its role in melanoma. Here, we identified a role for PKCα in melanoma cell survival in a three-dimensional collagen model mimicking the in vivo pathophysiology of the dermis. A pathway was identified that involved integrin αv-mediated up-regulation of PKCα and PKCα-dependent regulation of p53 localization, which was connected to melanoma cell survival. Melanoma survival and growth in three-dimensional microenvironments requires the expression of integrin αv, which acts to suppress p53 activity. Interestingly, microarray analysis revealed that PKCα was up-regulated by integrin αv in a three-dimensional microenvironment-dependent manner. Integrin αv was observed to promote a relocalization of endogenous p53 from the nucleus to the cytoplasm upon growth in three-dimensional collagen as well as in vivo, whereas stable knockdown of PKCα inhibited the integrin αv-mediated relocalization of p53. Importantly, knockdown of PKCα also promoted apoptosis in three-dimensional collagen and in vivo, resulting in reduced tumor growth. This indicates that PKCα constitutes a crucial component of the integrin αv-mediated pathway(s) that promote p53 relocalization and melanoma survival. 相似文献
6.
7.
We recently reported a reciprocal relationship between tumor necrosis factor alpha (TNFα) and insulin-like receptor growth factor binding protein 3 (IGFBP-3) in whole retina of normal and IGFBP-3 knockout mice. A similar relationship was also observed in cultured retinal endothelial cells (REC). We found that TNFα significantly reduced IGFBP-3 levels and vice-versa, IGFBP-3 can lower TNFα and TNFα receptor expression. Since IGFBP-3 is protective to the diabetic retina and TNFα is causative in the development of diabetic retinopathy, we wanted to better understand the cellular mechanisms by which TNFα can reduce IGFBP-3 levels. For these studies, primary human retinal endothelial cells (REC) were used since these cells undergo TNFα-mediated apoptosis under conditions of high glucose conditions and contribute to diabetic retinopathy. We first cultured REC in normal or high glucose, treated with exogenous TNFα, then measured changes in potential signaling pathways, with a focus on P38 mitogen-activated protein kinase alpha (P38α) and casein kinase 2 (CK2) as these pathways have been linked to both TNFα and IGFBP-3. We found that TNFα significantly increased phosphorylation of P38α and CK2. Furthermore, specific inhibitors of P38α or CK2 blocked TNFα inhibition of IGFBP-3 expression, demonstrating that TNFα reduces IGFBP-3 through activation of P38α and CK2. Since TNFα and IGFBP-3 are key mediators of retinal damage and protection respectively in diabetic retinopathy, increased understanding of the relationship between these two proteins will offer new therapeutic options for treatment. 相似文献
8.
Laiqun Zhang Ken Blackwell Lauren M. Workman Songhai Chen Marshall R. Pope Siegfried Janz Hasem Habelhah 《Molecular and cellular biology》2015,35(19):3324-3338
Although TRAIL is considered a potential anticancer agent, it enhances tumor progression by activating NF-κB in apoptosis-resistant cells. Cellular FLICE-like inhibitory protein (cFLIP) overexpression and caspase-8 activation have been implicated in TRAIL-induced NF-κB activation; however, the underlying mechanisms are unknown. Here, we report that caspase-8-dependent cleavage of RIP1 in the kinase domain (KD) and intermediate domain (ID) determines the activation state of the NF-κB pathway in response to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment. In apoptosis-sensitive cells, caspase-8 cleaves RIP1 in the KD and ID immediately after the recruitment of RIP1 to the receptor complex, impairing IκB kinase (IKK) recruitment and NF-κB activation. In apoptosis-resistant cells, cFLIP restricts caspase-8 activity, resulting in limited RIP1 cleavage and generation of a KD-cleaved fragment capable of activating NF-κB but not apoptosis. Notably, depletion of the cytoplasmic pool of TRAF2 and cIAP1 in lymphomas by CD40 ligation inhibits basal RIP1 ubiquitination but does not prompt cell death, due to CD40L-induced cFLIP expression and limited RIP1 cleavage. Inhibition of RIP1 cleavage at the KD suppresses NF-κB activation and cell survival even in cFLIP-overexpressing lymphomas. Importantly, RIP1 is constitutively cleaved in human and mouse lymphomas, suggesting that cFLIP-mediated and caspase-8-dependent limited cleavage of RIP1 is a new layer of mechanism that promotes NF-κB activation and lymphoma survival. 相似文献
9.
10.
11.
12.
13.
Gillian Borland Rebecca J. Bird Timothy M. Palmer Stephen J. Yarwood 《The Journal of biological chemistry》2009,284(26):17391-17403
14.
Shee-Chan Lin Wei-Yu Chen Kai-Yuan Lin Sheng-Hsuan Chen Chun-Chao Chang Sey-En Lin Chia-Lang Fang 《PloS one》2013,8(2)
Objectives
This study investigated the PKCα protein expression in gastric carcinoma, and correlated it with clinicopathological parameters. The prognostic significance of PKCα protein expression in gastric carcinoma was analyzed.Methods
Quantitative real-time PCR test was applied to compare the PKCα mRNA expression in tumorous and nontumorous tissues of gastric carcinoma in ten randomly selected cases. Then PKCα protein expression was evaluated in 215 cases of gastric carcinoma using immunohistochemical method. The immunoreactivity was scored semiquantitatively as: 0 = absent; 1 = weak; 2 = moderate; and 3 = strong. All cases were further classified into two groups, namely PKCα overexpression group with score 2 or 3, and non-overexpression group with score 0 or 1. The PKCα protein expression was correlated with clinicopathological parameters. Survival analysis was performed to determine the prognostic significance of PKCα protein expression in patients with gastric carcinoma.Results
PKCα mRNA expression was upregulated in all ten cases of gastric carcinoma via quantitative real-time PCR test. In immunohistochemical study, eighty-eight out of 215 cases (41%) of gastric carcinoma revealed PKCα protein overexpression, which was statistically correlated with age (P = 0.0073), histologic type (P<0.0001), tumor differentiation (P = 0.0110), depth of invasion (P = 0.0003), angiolymphatic invasion (P = 0.0373), pathologic stage (P = 0.0047), and distant metastasis (P = 0.0048). We found no significant difference in overall and disease free survival rates between PKCα overexpression and non-overexpression groups (P = 0.0680 and 0.0587). However, PKCα protein overexpression emerged as a significant independent prognostic factor in multivariate Cox regression analysis (hazard ratio 0.632, P = 0.0415).Conclusions
PKCα protein is upregulated in gastric carcinoma. PKCα protein expression is statistically correlated with age, histologic type, tumor differentiation, depth of invasion, angiolymphatic invasion, pathologic stage, and distant metastasis. The PKCα protein overexpression in patients with gastric carcinoma is a significant independent prognostic factor in multivariate Cox regression analysis. 相似文献15.
16.
17.
18.
B cells are critically important in combating bacterial infections and their differentiation into plasma cells and memory cells aids bacterial clearance and long-lasting immunity conferred by essentially all vaccines. Outer membrane protein A (OmpA) of Shigella flexneri 2a has been demonstrated to induce the production of IgG and IgA in vivo following immunization of mice through intranasal route, but the direct involvement of B cells in OmpA-mediated immune regulation was not determined. Consequently, we investigated whether OmpA can modulate B cell functions and identified the molecular events involved in OmpA-induced B cell immune response in vitro. We show that OmpA of S. flexneri 2a activates B cells to produce protective cytokines, IL-6 and IL-10 as well as facilitates their differentiation into antibody secreting cells (ASCs). The immunostimulatory properties of OmpA are attributed to the increased surface expression of MHCII and CD86 on B cells. We also report here that B cell activation by OmpA is mediated strictly through recognition by TLR2, resulting in initiation of cascades of signal transduction events, involving increased phosphorylation of protein tyrosine kinases (PTKs), ERK and IκBα, leading to nuclear translocation of NF-κB. Importantly, a TLR2 antibody diminishes OmpA-induced upregulation of MHCII and CD86 on B cell surface as well as significantly inhibits B cell differentiation and cytokine secretion. Furthermore, we illustrate that B cell differentiation into ASCs and induction of cytokine secretion by OmpA are dependent on PTKs activity. Moreover, we identify that OmpA-induced B cell differentiation is entirely dependent on ERK pathway, whereas both NF-κB and ERK are essential for cytokine secretion by B cells. Overall, our data demonstrate that OmpA of S. flexneri 2a amplifies TLR signaling in B cells and triggers B cell immune response, which is critical for the development of an effective adaptive immunity to an optimal vaccine antigen. 相似文献
19.
Christopher B. Guest Eric L. Deszo Matthew E. Hartman Jason M. York Keith W. Kelley Gregory G. Freund 《PloS one》2008,3(2)
Macrophages are capable of assuming numerous phenotypes in order to adapt to endogenous and exogenous challenges but many of the factors that regulate this process are still unknown. We report that Ca2+/calmodulin-dependent kinase kinase α (CaMKKα) is expressed in human monocytic cells and demonstrate that its inhibition blocks type-II monocytic cell activation and promotes classical activation. Affinity chromatography with paramagnetic beads isolated an approximately 50 kDa protein from nuclear lysates of U937 human monocytic cells activated with phorbol-12-myristate-13-acetate (PMA). This protein was identified as CaMKKα by mass spectrometry and Western analysis. The function of CaMKKα in monocyte activation was examined using the CaMKKα inhibitors (STO-609 and forskolin) and siRNA knockdown. Inhibition of CaMKKα, enhanced PMA-dependent CD86 expression and reduced CD11b expression. In addition, inhibition was associated with decreased translocation of CaMKKα to the nucleus. Finally, to further examine monocyte activation profiles, TNFα and IL-10 secretion were studied. CaMKKα inhibition attenuated PMA-dependent IL-10 production and enhanced TNFα production indicating a shift from type-II to classical monocyte activation. Taken together, these findings indicate an important new role for CaMKKα in the differentiation of monocytic cells. 相似文献
20.
Marcela Brissova Rachana Haliyur Diane Saunders Shristi Shrestha Chunhua Dai David M. Blodgett Rita Bottino Martha Campbell-Thompson Radhika Aramandla Gregory Poffenberger Jill Lindner Fong Cheng Pan Matthias G. von Herrath Dale L. Greiner Leonard D. Shultz May Sanyoura Louis H. Philipson Mark Atkinson Alvin C. Powers 《Cell reports》2018,22(10):2667-2676