首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
An open reading frame of 885 nucleotides was identified as the Leptospira interrogans metF gene. The deduced amino acid sequence (294 amino acids) showed similarities with Escherichia coli methylene tetrahydrofolate reductase (MetF or MTHFR) (33% identity) and with the N-terminal part of human MTHFR (33% identity). The L. interrogans metF gene complements an E. coli metF mutant to prototrophy, suggesting the functionality of the folate branch converging to form methionine. In addition, the L. interrogans MetF was found to be thermolabile. The metF gene belonged to the CII secondary chromosome, in contrast to the previously isolated metY and metX genes, which have been localized to the CI chromosome of Leptospira sp.  相似文献   

10.
The metJ gene encoding the methionine aporepressor was placed under the control of a strong and inducible promoter, ptac. Bacterial strains carrying the recombinant plasmid pIP35 overproduced the regulatory protein by a factor of 200 over the wild type strain as determined by the immunoblot technique. The purified metJ gene product negatively controls the expression of the metF gene, in a cell-free system as shown by repression of beta-galactosidase synthesis under the control of the metF promoter. The metJ protein binds to a DNA fragment containing the potential operator of the metF gene with an affinity which is 10 times greater in the presence of S-adenosylmethionine than in its absence. Equilibrium dialysis experiments showed that the met aporepressor binds 2 mol of S-adenosylmethionine per mol of dimer with a dissociation constant of 200 microM.  相似文献   

11.
12.
Methionine auxotrophic mutants of Methylophilus methylotrophus AS1 expressing a mutant form of dapA (dapA24) encoding a dihydrodipicolinate synthase desensitized from feedback inhibition by L-lysine, and mutated lysE (lysE24) encoding the L-lysine exporter from Corynebacterium glutamicum 2256, produced higher amounts of L-lysine from methanol as sole carbon source than did other amino acid auxotrophic mutants. Especially, the M. methylotrophus 102 strain, carrying both dapA24 and lysE24, produced L-lysine in more than 1.5 times amounts higher than the parent. A single-base substitution was identified in this auxotroph in codon-329 of the open reading frame of metF, encoding 5,10-methylene-tetra-hydrofolate reductase. We constructed a metF disruptant mutant carrying both dapA24 and lysE24, and confirmed increases in L-lysine production. This is the first report to the effect that metF deficient increased L-lysine production in methylotroph.  相似文献   

13.
The effects of Mu or transposon 5 insertions on the expression of genes of the metJBLF cluster show that metB and metL form an operon, transcribed from metB to metL, and that metF and metJ are independently transcribed.  相似文献   

14.
The repression of MetE synthesis in Escherichia coli by vitamin B12 is known to require the MetH holoenzyme (B12-dependent methyltransferase) and the metF gene product. Experiments using trimethoprim, an inhibitor of dihydrofolate reductase, show that the MetF protein is not directly involved in the repression, but that N5-methyltetrahydrofolic acid (N5-methyl-H4-folate), the product of the MetF enzymatic reaction is required. Since the methyl group from N5-methyl-H4-folate is normally transferred to the MetH holoenzyme to form a methyl-B12 enzyme, the present results suggest that a methyl-B12 enzyme is involved in the vitamin B12 repression of metE expression. Other results argue against the possibility that a methyl-B12 enzyme functions in this repression solely by decreasing the cellular level of homocysteine, which is required for MetR activation of metE expression. Experiments with metJ mutants show that the MetJ protein mediates about 50% of the repression of metE expression by B12 but is totally responsible for the regulation of metF expression by vitamin B12.  相似文献   

15.
A simple bacterial model for studying effects of human mutations in vivo, when homologous genes exist in bacterial and human cells, is presented. We have constructed Escherichia coli strains bearing different alleles of the metF gene, an ortologue of human MTHFR gene, coding for 5,10-methylenetetrahydrofolate reductase. These strains bear a null mutation in the chromosomal metF gene and different metF alleles on plasmid(s), and thus there are merozygotes mimicking wild-type homozygotes, heterozygotes and recessive mutant homozygotes. The A177V mutantion in metF corresponds to one of the most common MTHFR polymorphism, A222V, which has been shown to be associated with increased levels of homocysteine in plasma that, in turn, causes many serious medical problems. Results of relatively simple and quick experiments with these strains are compatible with previously published reports on effects of the A222V substitution in the product of MTHFR gene. In addition, these results suggest either impairment of formation of heterodimers and/or heterotetramers by wild-type and A177V metF variants or dominance of the wild-type polypepides in such structures. Moreover, positive effects of folic acid and vitamins B2 and B12 on physiology of the mutant cells, suggested on the basis of clinical studies, is confirmed. Therefore, we conclude that the bacterial model described in this report may be a useful tool in studies on human mutations.  相似文献   

16.
We isolated an Escherichia coli methionine auxotroph that displays a growth phenotype similar to that of known metF mutants but has elevated levels of 5,10-methylenetetrahydrofolate reductase, the metF gene product. Transduction analysis indicates that the mutant carries normal metE, metH, and metF genes; the phenotype is due to a single mutation, eliminating the possibility that the strain is a metE metH double mutant; and the new mutation is linked to the metE gene by P1 transduction. Plasmids carrying the Salmonella typhimurium metE gene and flanking regions complement the mutation, even when the plasmid-borne metE gene is inactivated. Enzyme assays show that the mutation results in a dramatic decrease in metE gene expression, a moderate decrease in metH gene expression, and a disruption of the metH-mediated vitamin B12 repression of the metE and metF genes. Our evidence suggests that the methionine auxotrophy caused by the new mutation is a result of insufficient production of both the vitamin B12-independent (metE) and vitamin B12-dependent (metH) transmethylase enzymes that are necessary for the synthesis of methionine from homocysteine. We propose that this mutation defines a positive regulatory gene, designated metR, whose product acts in trans to activate the metE and metH genes.  相似文献   

17.
Fusions of the lac genes to the promoters of four structural genes in the methionine biosynthetic pathway, metA, metB, metE, and metF, were obtained by the use of the Mu d(Ap lac) bacteriophage. The levels of beta-galactosidase in these strains could be derepressed by growth under methionine-limiting conditions. Furthermore, growth in the presence of vitamin B12 repressed the synthesis of beta-galactosidase in strains containing a fusion of lacZ to the metE promoter, phi(metE'-lacZ+). Mutations affecting the regulation of met-lac fusions were generated by the insertion of Tn5. Tn5 insertions were obtained at the known regulatory loci metJ and metK. Interestingly, a significant amount of methionine adenosyltransferase activity remained in the metK mutant despite the fact that the mutation was generated by an insertion. Several Tn5-induced regulatory mutations were isolated by screening for high-level beta-galactosidase expression in a phi(metE'-lacZ+) strain in the presence of vitamin B12. Tn5 insertions mapping at the btuB (B12 uptake), metH (B12 dependent tetrahydropteroylglutamate methyltransferase), and metF (5,10-methylenetetrahydrofolate reductase) loci were obtained. The isolation of the metH mutant was consistent with previous suggestions that the metH gene product is required for the repression of metE by vitamin B12. The metF::Tn5 insertion was of particular interest since it suggested that a functional metf gene product was also needed for repression of metE by vitamin B12.  相似文献   

18.
19.
20.
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate in the synthesis of methionine from homocysteine. We have cloned and characterized two Aspergillus nidulans genes encoding MTHFRs: metA and metF. Mutations in either gene result in methionine requirement; the metA-encoded enzyme is responsible for only 10-15% of total MTHFR activity. These two enzymes belong to different classes of MTHFRs. Mutations in metA but not in the metF gene are suppressed by mutations resulting in enhancement of homocysteine synthesis. The expression of both genes is up-regulated by homocysteine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号