首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
It is still a suspicion among some evolutionary biologists that the incursion of molecular biology into their field will do little more than determine the DNA sequence differences underlying evolutionary changes already evident at the organismal level. Work on an esterase enzyme involved in the reproductive biology of Drosophila belies this view. Although it is already one of the most intensively studied gene - enzyme systems at an organismal level, recent molecular invetigations reveal several unexpected, and, in some cases, still inexplicable phenomena in its evolutionary history.  相似文献   

2.
Molecular insights into eukaryotic chemotaxis.   总被引:2,自引:0,他引:2  
Many cells display directed migration toward specific compounds. The best-studied eukaryotic models of chemotaxis are polymorphonuclear leukocytes, which respond to formylated peptides and Dictyostelium amoebas, which respond to extracellular cAMP. In both cell types, chemoattractants bind to surface receptors that contain seven transmembrane domains and interact with G proteins. Some cells, such as fibroblasts, undergo chemotaxis toward compounds whose receptors lack this motif and transmit their signals by other mechanisms. The cytosolic changes elicited by chemoattractants include increased levels of cAMP, cGMP, inositol phosphates, and calcium. These changes are correlated with actin polymerization and other cytoskeletal events that result in preferential extension of pseudopods toward the chemoattractant. Dictyostelium cell lines in which specific genes have been disrupted have demonstrated the necessity of a cAMP receptor (cAR1) and a G protein alpha-subunit (G alpha 2) for responsiveness to cAMP. Other proteins, such as myosin heavy chain and several actin binding proteins, are dispensible although their absence does affect the details of chemotaxis. The disruption of other relevant genes and the genetic reconstitution of chemotaxis in cells lacking crucial proteins should reveal many clues about this complicated and fascinating process.  相似文献   

3.
Water is probably the most important molecule in biology. It solvates molecules, all biochemical reactions occur in it and it is a major driving force in protein folding. Phospholipid membranes separate different water environments, but connections do exist between the different compartments. The integral membrane proteins (IMPs) form these connections. In the case of ions, IMPs form the passageways that regulate ion movement across the membrane. Structural information from three ion distinct channels are examined to see how these channels first select for and then control the movement of their target ions. This review focuses on how these channels select for target ions and control their movement while taking into account and using different properties of water. This includes the use of hydrophobic gates, mimicking the water environment, and controlling ions indirectly by controlling water.  相似文献   

4.
Water is probably the most important molecule in biology. It solvates molecules, all biochemical reactions occur in it and it is a major driving force in protein folding. Phospholipid membranes separate different water environments, but connections do exist between the different compartments. The integral membrane proteins (IMPs) form these connections. In the case of ions, IMPs form the passageways that regulate ion movement across the membrane. Structural information from three ion distinct channels are examined to see how these channels first select for and then control the movement of their target ions. This review focuses on how these channels select for target ions and control their movement while taking into account and using different properties of water. This includes the use of hydrophobic gates, mimicking the water environment, and controlling ions indirectly by controlling water.  相似文献   

5.
Potyviral helper component proteinase (HCPro) is a well‐characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus‐infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S–adenosyl‐l –methionine synthase and S–adenosyl‐l –homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus‐infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA‐induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC‐mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome‐associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1.  相似文献   

6.
In bacteria, the tRNA-processing endonuclease ribonuclease P is composed of a large ( approximately 400 nucleotide) catalytic RNA and a smaller ( approximately 100 amino acid) protein subunit that is essential for substrate recognition. Current biochemical and biophysical investigations are providing fresh insights into the modular architecture of the ribozyme, the mechanisms of substrate specificity and the role of essential metal ions in catalysis. Together with recent high-resolution structures of portions of the ribozyme, these findings are beginning to reveal how the functions of RNA and protein are coordinated in this ribonucleoprotein enzyme.  相似文献   

7.
Nogo-A is part of the reticulon family of proteins localized to the myelin and oligodendroglial plasma membranes. Nogo-A specifically initiates signal transduction cascades limiting axonal regrowth following injury and disease in the adult mammalian central nervous system (CNS). Recent novel data support the contention that neuronal Nogo-A plays an important role in regulating cytoskeletal re-organization without the requirement of signaling through its cognate receptor (Nogo receptor). These data, along with the recent findings that the N-terminus of Nogo-A can interact with integrins and that NgR1 interacts with the amyloid precursor protein extracellularly, as well as novel findings showing ubiquitin ligases binding with Nogo-A intracellularly add a layer of complexity to its functional role in the CNS.  相似文献   

8.
9.
Carboxylesterase 2 (CES2), the main carboxylesterase expressed in human intestine, is an increasingly important enzyme in anti-cancer combined therapies for the treatment of different pathologies like colon adenocarcinoma and malignant glioma. The production of human recombinant CES2, in human embryonic kidney cells (HEK-293T cells) using serum-free media, is herein described. CES2 secretion to the media was achieved by the simple addition of an in-frame C-terminal 10× histidine tag (CES2-10xHis) without the need of addition of extra N-terminal signalling sequences or the mutation or deletion of the C-terminal HTEL motif responsible for retaining the protein in the lumen of endoplasmic reticulum. This secretion allowed a fourfold increase in CES2 production. The characterization of human recombinant CES2 showed that this protein exists in other active and inactive forms than the described 60 kDa monomer.  相似文献   

10.
Our understanding of plant potassium transport has increased in the past decade through the application of molecular biological techniques. In this review, recent work on inward and outward rectifying K(+) channels as well as high affinity K(+) transporters is described. Through the work on inward rectifying K(+) channels, we now have precise details on how the structure of these proteins determines functional characteristics such as ion conduction, pH sensitivity, selectivity and voltage sensing. The physiological function of inward rectifying K(+) channels in plants has been clarified through the analysis of expression patterns and mutational analysis. Two classes of outward rectifying K(+) channels have now been cloned from plants and their initial characterisation is reviewed. The physiological role of one class of outward rectifying K(+) channel has been demonstrated to be involved in long distance transport of K(+) from roots to shoots. The molecular structure and function of two classes of energised K(+) transporters are also reviewed. The first class is energised by Na(+) and shares structural similarities with K(+) transport mechanisms in bacteria and fungi. Structure-function studies suggest that it should be possible to increase the K(+) and Na(+) selectivity of these transporters, which will enhance the salt tolerance of higher plants. The second class of K(+) transporter is comprised of a large gene family and appears to have a dual affinity for K(+). A suite of molecular techniques, including gene cloning, oocyte expression, RNA localisation and gene inactivation, is now being used to fully characterise the biophysical and physiological function of plants K(+) transport mechanisms.  相似文献   

11.
Cobalamin-deficient (Cbl-D) central neuropathy in the rat is associated with a locally increased expression of neurotoxic tumour necrosis factor-alpha (TNF-alpha) and a locally decreased expression of neurotrophic epidermal growth factor (EGF). These recent findings suggest that cobalamin oppositely regulates the expression of TNF-alpha and EGF, and raise the possibility that these effects might be independent of its coenzyme function. Furthermore, adult Cbl-D patients have high levels of TNF-alpha and low levels of EGF in the serum and cerebrospinal fluid. Serum levels of TNF-alpha and EGF of cobalamin-treated patients normalize concomitantly with haematological disease remission. These observations suggest that cobalamin deficiency induces an imbalance in TNF-alpha and EGF levels in biological fluids that might have a role in the pathogenesis of the damage caused by pernicious anaemia.  相似文献   

12.
Because of the limits inherent in historical sources on ancient plague epidemics, many questions concerning their etiology and epidemiology remain unanswered. Molecular biology tools and the use of dental pulp as a preserved source of bacterial DNA enabled us to demonstrate that Yersinia pestis was the etiologic agent of the 1347 European Black Death and of two additional epidemics in 1590 and 1722 in southern France.  相似文献   

13.
Networks and clusters of intramolecular interactions, as well as their "communication" across the three-dimensional architecture have a prominent role in determining protein stability and function. Special attention has been dedicated to their role in thermal adaptation. In the present contribution, seven previously experimentally characterized mutants of a cold-adapted α-amylase, featuring mesophilic-like behavior, have been investigated by multiple molecular dynamics simulations, essential dynamics and analyses of correlated motions and electrostatic interactions. Our data elucidate the molecular mechanisms underlying the ability of single and multiple mutations to globally modulate dynamic properties of the cold-adapted α-amylase, including both local and complex unpredictable distal effects. Our investigation also shows, in agreement with the experimental data, that the conversion of the cold-adapted enzyme in a warm-adapted variant cannot be completely achieved by the introduction of few mutations, also providing the rationale behind these effects. Moreover, pivotal residues, which are likely to mediate the effects induced by the mutations, have been identified from our analyses, as well as a group of suitable candidates for protein engineering. In fact, a subset of residues here identified (as an isoleucine, or networks of mesophilic-like salt bridges in the proximity of the catalytic site) should be considered, in experimental studies, to get a more efficient modification of the features of the cold-adapted enzyme.  相似文献   

14.
The structure of thiazole synthase (Thi4) from Saccharomyces cerevisiae was determined to 1.8 A resolution. Thi4 exists as an octamer with two monomers in the asymmetric unit. The structure reveals the presence of a tightly bound adenosine diphospho-5-(beta-ethyl)-4-methylthiazole-2-carboxylic acid at the active site. The isolation of this reaction product identifies NAD as the most likely precursor and provides the first mechanistic insights into the biosynthesis of the thiamin thiazole in eukaryotes. Additionally, the Thi4 structure reveals the first protein structure with a GR(2) domain that binds NAD instead of FAD, raising interesting questions about how this protein evolved from a flavoenzyme to a NAD binding enzyme.  相似文献   

15.
Recent success in the cloning of glycosyl-transferase genes involved in the synthesis of GSLs has enabled us to modulate the expression profiles of GSLs in cultured cells and experimental animals, and allowed novel approaches to obtain clear elucidation of individual enzyme products by observing the resulting phenotypic changes in the mutant animals and transfected cells. In this review, recent progress in the study of glycosyltransferases involved in the synthesis and modification of GSLs has been summarized with special emphasis on their function.  相似文献   

16.
17.
The endoplasmic reticulum (ER) is a multifunctional intracellular organelle responsible for the synthesis, processing and trafficking of a wide variety of proteins essential for cell growth and survival. Therefore, comprehensive characterization of the ER proteome is of great importance to the understanding of its functions and has been actively pursued in the past decade by scientists in the proteomics field. This review summarizes major proteomic studies published in the past decade that focused on the ER proteome. We evaluate the data sets obtained from two different organs, liver and pancreas each of which contains a primary cell type (hepatocyte and acinar cell) with specialized functions. We also discuss how the nature of the proteins uncovered is related to the methods of organelle purification, organelle purity and the techniques used for protein separation prior to MS. In addition, this review also puts emphasis on the biological insights gained from these studies regarding the molecular functions of the ER including protein synthesis and translocation, protein folding and quality control, ER-associated degradation and ER stress, ER export and membrane trafficking, calcium homeostasis and detoxification and drug metabolism.  相似文献   

18.
Molecular insights into the causes of male infertility   总被引:6,自引:0,他引:6  
Infertility is a reproductive health problem that affects many couples in the human population. About 13–18% of couple suffers from it and approximately one-half of all cases can be traced to either partner. Regardless of whether it is primary or secondary infertility, affected couples suffer from enormous emotional and psychological trauma and it can constitute a major life crisis in the social context. Many cases of idiopathic infertility have a genetic or molecular basis. The knowledge of the molecular genetics of male infertility is developing rapidly, new “spermatogenic genes” are being discovered and molecular diagnostic approaches (DNA chips) established. This will immensely help diagnostic and therapeutic approaches to alleviate human infertility. The present review provides an overview of the causes of human infertility, particularly the molecular basis of male infertility and its implications for clinical practice.  相似文献   

19.
The domestication and improvement of crop plants have long fascinated evolutionary biologists, geneticists, and anthropologists. In recent years, the development of increasingly powerful molecular and statistical tools has reinvigorated this now fast-paced field of research. In this paper, we provide an overview of how such tools have been applied to the study of crop evolution. We also highlight lessons that have been learned in light of a few long-standing and interrelated hypotheses concerning the origins of crop plants and the nature of the genetic changes underlying their evolution. We conclude by discussing compelling evolutionary genomic approaches that make possible the efficient and unbiased identification of genes controlling crop-related traits and provide further insight into the actual timing of selection on particular genomic regions.  相似文献   

20.
Molecular insights into the antifungal mechanism of bacilysin   总被引:1,自引:0,他引:1  
Bacilysin is one of the simplest antimicrobial peptides and has drawn great attention for its excellent performance against Candida albicans. In this study, the antifungal mechanism of bacilysin was investigated. The target enzyme glucosamine-6-phosphate synthase (GFA) was expressed heterologously in Escherichia coli and its inhibition by bacilysin and derivatives was studied. It was concluded that bacilysin could be hydrolyzed by a proteinase of C. albicans, and that the released product, anticapsin, then inhibited the aminotransferase activity of GFA. This result was verified by molecular simulation, and the interaction mode of anticapsin with GFA was detailed, which provides data for the development of novel antifungal drugs. Transport of bacilysin into fungal cells was also simulated and it was shown that bacilysin is more readily transported into cells than anticapsin. Thus, our findings support a mechanism whereby bacilysin is transported into fungal pathogens, hydrolyzed to anticapsin, which then inhibits GFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号