首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.  相似文献   

2.
Three pigeonpea (Cajanus cajan L. Millsp.) genotypes- GT-1, AKP-1 and PRG-158 with varying crop duration, growth habit and flowering pattern were evaluated for variability in their response for drought stress. Drought stress was imposed at initiation of flowering and the observations on biomass and seed yield parameters were recorded at harvest. The magnitude of response of individual component to drought stress was found to be genotype specific. Drought stress significantly decreased photosynthetic rate (PN), transpiration rate (Tr) and relative water content (RWC) in all the genotypes, however the magnitude of reduction differed with genotype. With drought stress, the reduction of PN was highest in GT-1 while reduction in Tr was highest in PRG-158. The genotype AKP-1, accumulated significantly higher concentrations of osmotic solutes especially proline under water deficit stress, this facilitated it to maintain higher relative water content (RWC) and lower malondialdehyde (MDA) content as compared to other genotypes. Drought stress also impacted biomass production and their partitioning to vegetative and reproductive components at harvest. There was significant variability between the genotypes for seed yield under drought stress while it was non-significant under well-watered condition. Drought stress enhanced flower drop and decreased flower to pod conversion resulting in reduced pod number and seed number in PRG-158 and GT-1. The genotype AKP-1 recorded superior performance for seed yield under stress environment due to its ability in maintaining pod and seed number as well as improved test weight (100 seed weight). Under drought stress, significant positive association of seed yield with proline, seed number, pod number and test weight clearly indicating their role in drought tolerance.  相似文献   

3.
The photosynthesis–nitrogen relationship is significantly different among species. Photosynthetic capacity per unit leaf nitrogen, termed as photosynthetic nitrogen-use efficiency (PNUE), has been considered an important leaf trait to characterise species in relation to their leaf economics, physiology, and strategy. In this review, I discuss (1) relations between PNUE and species ecology, (2) physiological causes and (3) ecological implications of the interspecific difference in PNUE. Species with a high PNUE tend to have high growth rates and occur in disturbed or high productivity habitats, while those with a low PNUE occur in stressful or low productivity habitats. PNUE is an important leaf trait that correlates with other leaf traits, such as leaf mass per area (LMA) and leaf life span, irrespective of life form, phylogeny, and biomes. Various factors are involved in the interspecific difference. In particular, nitrogen allocation within leaves and the mesophyll conductance for CO2 diffusion are important. To produce tough leaves, plants need to allocate more biomass and nitrogen to make thick cell walls, leading to a reduction in the mesophyll conductance and in nitrogen allocation to the photosynthetic apparatus. Allocation of biomass and nitrogen to cell walls may cause the negative relationship between PNUE and LMA. Since plants cannot maximise both PNUE and leaf toughness, there is a trade-off between photosynthesis and persistence, which enables the existence of species with various leaf characteristics on the earth.  相似文献   

4.
5.
Chronic psychosocial stress is increasingly being recognised as a risk factor for sporadic Alzheimer's disease (AD). The hypothalamic–pituitary–adrenal axis (HPA axis) is the major stress response pathway in the body and tightly regulates the production of cortisol, a glucocorticoid hormone. Dysregulation of the HPA axis and increased levels of cortisol are commonly found in AD patients and make a major contribution to the disease process. The underlying mechanisms remain poorly understood. In addition, within the general population there are interindividual differences in sensitivities to glucocorticoid and stress responses, which are thought to be due to a combination of genetic and environmental factors. These differences could ultimately impact an individuals’ risk of AD. The purpose of this review is first to summarise the literature describing environmental and genetic factors that can impact an individual's HPA axis reactivity and function and ultimately AD risk. Secondly, we propose a mechanism by which genetic factors that influence HPA axis reactivity may also impact inflammation, a key driver of neurodegeneration. We hypothesize that these factors can mediate glucocorticoid priming of the immune cells of the brain, microglia, to become pro-inflammatory and promote a neurotoxic environment resulting in neurodegeneration. Understanding the underlying molecular mechanisms and identifying these genetic factors has implications for evaluating stress-related risk/progression to neurodegeneration, informing the success of interventions based on stress management and potential risks associated with the common use of glucocorticoids.  相似文献   

6.
The mechanical inhomogeneity of the respiratory system is frequently investigated by measuring the frequency dependence of dynamic compliance, but no data are currently available describing the effects of body temperature variations. The aim of the present report was to study those effects in vivo. Peak airway pressure was measured during positive pressure ventilation in eight anesthetized rats while breathing frequency (but not tidal volume) was altered. Dynamic compliance was calculated as the tidal volume/peak airway pressure, and measurements were taken in basal conditions (mean rectal temperature 37.3 °C) as well as after total body warming (mean rectal temperature 39.7 °C). Due to parenchymal mechanical inhomogeneity and stress relaxation-linked effects, the normal rat respiratory system exhibited frequency dependence of dynamic lung compliance. Even moderate body temperature increments significantly reduced the decrements in dynamic compliance linked to breathing rate increments. The results were analyzed using Student’s and Wilcoxon’s tests, which yielded the same results (p < 0.05). Body temperature variations are known to influence respiratory mechanics. The frequency dependence of dynamic compliance was found, in the experiments described, to be temperature-dependent as temperature variations affected parenchymal mechanical inhomogeneity and stress relaxation. These results suggest that body temperature variations should be taken into consideration when the dynamic compliance–breathing frequency relationship is being examined during clinical assessment of inhomogeneity of lung parenchyma in patients.  相似文献   

7.
8.
Liang  Fubin  Chen  Minzhi  Shi  Yuan  Tian  Jingshan  Zhang  Yali  Gou  Ling  Zhang  Wangfeng  Jiang  Chuangdao 《Photosynthesis research》2021,150(1-3):227-237
Photosynthesis Research - Cotton has many leaves and even more bolls, which results in a complicated source–sink relationship. Under water stress, the single boll weight (SBW) of cotton...  相似文献   

9.
The mammalian unfolded protein response (UPR) protects the cell against the stress of misfolded proteins in the endoplasmic reticulum (ER). Failure to adapt to ER stress causes the UPR to trigger apoptosis. Inositol-requiring enzyme-1a (IRE1a), as one of three unfolded protein sensors in UPR signaling pathways, senses ER unfolded proteins through an ER lumenal domain that becomes oligomerized during ER stress. It is known to be important for ER stress-mediated apoptosis and cell growth, but the exact molecular mechanism underlying these processes remains unexplored. In this study, we report that knockdown of IRE1a by an siRNA silencing approach enhanced, whereas its overexpression inhibited, cell proliferation in Hepatoma cells. Besides, overexpression of IRE1a induced, while its repression inhibited, ER stress-mediated apoptosis in Hepatomas cells. Furthermore, we found that overexpressed IRE1a can down-regulate Polo-like kinase 1(PLK1) from mRNA and protein two levels. IRE1a-mediated induction of apoptosis and inhibition of proliferation in response to ER stress is through downregulation PLK1, an early trigger for G2/M transition known to be participated in regulating cell proliferation and cell apoptosis. Collectively, these findings reveal a novel critical role of IRE1a in ER stress-mediated apoptosis and the molecular mechanisms involved. IRE1a may be a useful molecular target for the development of novel predictive and therapeutic strategies in cancer.  相似文献   

10.
11.
12.
13.
Polycrystalline materials like Cu–Pb alloy consist of four types of microstructural components, including grain cells, grain boundaries, triple junctions and vertex points, the mechanical properties of which governed by the atomic proportion of the alloy elements to a certain degree. The internal stresses from such microstructural components are quite different. Due to experimental limitations, the internal stresses from the alloy materials are difficult to measure directly, especially in the microstructural components. Here, we report a bottom-up approach using an atomistic calculation to obtain atomic properties in Cu-based alloy, as well as that in the microstructural components. The results reveal that a steep stress gradient exists at the interfaces of the alloy, which decreases significantly with the increase of the Pb. The defects evolution process in the alloy samples are investigated during tensile loading, revealing that the defect nucleation is delayed due to the decreasing von Mises stress gradient in the interfaces region as Pb increased. And the increased hydrostatic pressure in the interfaces regions, as a secondary factor can promote the defect nucleation. Among alloy samples with a grain size of 18.58 nm, that with 6.6 at.% Pb has minimal defects and the best mechanical properties.  相似文献   

14.
In previous studies we showed a marked increase in secretion of inflammatory cytokines TNFα and interleukin (IL)-1β by mouse macrophages in response to different doses of ionizing radiation (IR). Here we show the stimulation of IL-12 and IL-18 secretion by mouse peritoneal macrophages after whole-body irradiation with exploration of the possible mechanisms and implications in cancer radiotherapy. Both low (0.075 Gy) and high (2 Gy) doses of IR were found to cause sustained stimulation of IL-12 and IL-18 secretion by mouse macrophages; this paralleled the activation of NF-κB as well as up-regulated expression of CD14 and TLR4–MD2 on the macrophage surface and MyD88 in the cytoplasm. The expression of CD14, TLR4–MD2 and MyD88 increased in a dose-dependent manner from radiation doses between 0.05 and 2 Gy. The secretion of IL-12 and IL-18 showed a dose-dependent increase from doses between 0.05 and 4 Gy. It is concluded that IR can stimulate the secretion of IL-12 and IL-18 presumably via activation of the Toll signaling pathway in macrophages. The potential harmful effect of repeated doses of radiation used in radiotherapy for certain cancers is discussed. Yu-Xing Shan and Shun-Zi Jin contributed equally to the present work.  相似文献   

15.
Two in vitro and one in vivo experiments were conducted to investigate the effects of a selection of plant compounds on rumen fermentation, microbial concentration and methane emissions in goats. Treatments were: control (no additive), carvacrol (CAR), cinnamaldehyde (CIN), eugenol (EUG), propyl propane thiosulfinate (PTS), propyl propane thiosulfonate (PTSO), diallyl disulfide (DDS), a mixture (40 : 60) of PTS and PTSO (PTS+PTSO), and bromochloromethane (BCM) as positive control with proven antimethanogenic effectiveness. Four doses (40, 80, 160 and 320 µl/l) of the different compounds were incubated in vitro for 24 h in diluted rumen fluid from goats using two diets differing in starch and protein source within the concentrate (Experiment 1).The total gas production was linearly decreased (P<0.012) by all compounds, with the exception of EUG and PTS+PTSO (P⩾0.366). Total volatile fatty-acid (VFA) concentration decreased (P⩽0.018) only with PTS, PTSO and CAR, whereas the acetate:propionate ratio decreased (P⩽0.002) with PTS, PTSO and BCM, and a tendency (P=0.064) was observed for DDS. On the basis of results from Experiment 1, two doses of PTS, CAR, CIN, BCM (160 and 320 µl/l), PTSO (40 and 160 µl/l) and DDS (80 and 320 µl/l) were further tested in vitro for 72 h (Experiment 2). The gas production kinetics were affected (P⩽0.045) by all compounds, and digested NDF (DNDF) after 72 h of incubation was only linearly decreased (P⩽0.004) by CAR and PTS. The addition of all compounds linearly decreased (P⩽0.009) methane production, although the greatest reductions were observed for PTS (up to 96%), DDS (62%) and BCM (95%). No diet–dose interaction was observed. To further test the results obtained in vitro, two groups of 16 adult non-pregnant goats were used to study in vivo the effect of adding PTS (50, 100 and 200 mg/l rumen content per day) and BCM (50, 100 and 160 mg/l rumen content per day) during the 9 days on methane emissions (Experiment 3). The addition of PTS and BCM resulted in linear reductions (33% and 64%, respectively, P⩽0.002) of methane production per unit of dry matter intake, which were lower than the maximum inhibition observed in vitro (87% and 96%, respectively). We conclude that applying the same doses in vivo as in vitro resulted in a proportional lower extent of methane decrease, and that PTS at 200 mg/l rumen content per day has the potential to reduce methane emissions in goats. Whether the reduction in methane emission observed in vivo persists over longer periods of treatments and improves feed conversion efficiency requires further research.  相似文献   

16.
There is mounting evidence demonstrating causative links between hyperglycemia, oxidative stress, and insulin resistance, the core pathophysiological features of type 2 diabetes mellitus. Using a combinational approach, we synthesized a vanadium–antioxidant (i.e., l-ascorbic acid) complex and examined its effect on insulin resistance and oxidative stress. This study was designed to examine whether vanadyl(IV)-ascorbate complex (VOAsc) would reduce oxidative stress, hyperglycemia, and insulin resistance in high-fat high-sucrose diet (HFSD)-induced type 2 diabetes in mice. Male C57BL/6J mice were fed a HFSD for 12 weeks to induce insulin resistance, rendering them diabetic. Diabetic mice were treated with rosiglitazone, sodium l-ascorbate, or VOAsc. At the end of treatment, fasting blood glucose, fasting serum insulin, homeostasis model assessment-insulin resistance index, and serum adipocytokine levels were measured. Serum levels of nitric oxide (NO) parameters were also determined. The liver was isolated and used for determination of malondialdehyde, reduced glutathione, and catalase levels, and superoxide dismutase and glutathione peroxidase activities. VOAsc groups exhibited significant reductions in serum adipocytokine and NO levels, and oxidative stress parameters compared to the corresponding values in the untreated diabetic mice. The results indicated that VOAsc is non-toxic. In conclusion, we identified VOAsc as a potentially effective adjunct therapy for the management of type 2 diabetes.  相似文献   

17.
18.
In the literature there appears to be variability in reported levels of certain hormones during haemorrhage, specifically adrenocorticotrophic hormone (ACTH) and β-endorphin. It is possible that this variability may be due to the choice of anaesthetic. Therefore, the effect of 3 common research-only anaesthetic agents (alphaxalone-alphadolone, propofol, and pentobarbitone) on ACTH and β-endorphin levels during haemorrhage was assessed in pigs. Animals were divided into 3 groups: group I received alphaxalone-alphadolone (n = 5), group II received propofol (n = 6), and group III received pentobarbitone (n = 6). Pigs were subjected to a continuous fixed-volume haemorrhage under one of the above anaesthetics while being mechanically ventilated. ACTH and β-endorphin levels increased significantly during haemorrhage under propofol and pentobarbitone anaesthesia but not with alphaxalone-alphadolone. For ACTH there was no significant difference between the groups, whereas for β-endorphin there was a significant difference between the propofol- and pentobarbitone-anaesthetized pigs. The increase in heart rate during haemorrhage was significantly different between the alphaxalone-alphadolone and propofol as well as between the propofol and pentobarbitone groups. The drop in blood pressure was only significantly different between the alphaxalone-alphadolone- and propofol-anaesthetized pigs. These results indicate that the choice of anaesthetic agent can affect the hormone response to haemorrhage and may account for the variable hormone levels reported in the published literature to date.  相似文献   

19.
The temperature–mortality relationship follows a well-known J-V shaped pattern with mortality excesses recorded at cold and hot temperatures, and minimum at some optimal value, referred as Minimum Mortality Temperature (MMT). As the MMT, which is used to measure the population heat-tolerance, is higher for people living in warmer places, it has been argued that populations will adapt to temperature changes. We tested this notion by taking advantage of a huge migratory flow that occurred in Italy during the 1950s, when a large number of unemployed people moved from the southern to the industrializing north-western regions. We have analyzed mortality–temperature relationships in Milan residents, split by groups identified by area of birth. In order to obtain estimates of the temperature-related risks, log-linear models have been used to fit daily death count data as a function of different explanatory variables. Results suggest that mortality risks differ by birthplace, regardless of the place of residence, namely heat tolerance in adult life could be modulated by outdoor temperature experienced early in life. This indicates that no complete adaptation might occur with rising external environmental temperatures.  相似文献   

20.
In this study, blood hormone profiles, physiological variables, and behavioral criteria in Corriedale ewes fed total mixed ration (TMR) at different moisture levels during thermal–humidity exposure were evaluated. Nine non-pregnant Corriedale ewes (ave. BW = 41 ± 3.5 kg) were individually fed diets based on maintenance requirements in metabolic crates. Ewes were assigned to three treatment groups according to a 3 × 3 Latin Square design for 3 periods of 21 days duration each (9 ewes per treatment). Treatments were TMR (CP (crude protein) = 16.1, TDN (total digestible nutrients) = 69.1%) moisture levels at 40, 50, and 60%. No differences were found in blood hormone profiles including cortisol (μg/dL), immunoglobulin G (mg/dL), triiodothyronine (ng/mL), thyroxin (μg/dL), growth hormone (ng/mL), prolactin (ng/mL), insulin (μU/mL), insulin-like growth factor 1 (ng/mL), aldostrone (ng/dL), antidiuretic hormone (pg/mL), and creatinine (mg/dL) among all treatment groups (p > 0.05). Measurements of physiological variables indicated that heart rate (number of beats/min) in the afternoon was higher in 50 and 60% TMR group than in the 40% group (p < 0.05). No differences were observed in respiratory rate (number/min), panting score, and fecal score among the groups (p > 0.05). The behavior criteria including urine excretion frequency (number/d), fecal excretion frequency (number/d), standing frequency (number/d), resting frequency (number/d), standing duration (min/d), and resting duration (min/d) showed no differences among the treatment groups (p > 0.05). Conclusions drawn indicate the minor impacts of TMR moisture levels up to 60% on behavioral criterions of Corriedale ewes during thermal–humidity exposure, but help smooth down the intensified heat stress conditions over physiological variables and endocrine system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号