首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dorsett D 《Current biology : CB》2004,14(19):R834-R836
Adherin facilitates sister chromatid cohesion, DNA repair and binding of the cohesin complex to chromosomes. New studies indicate that adherin activity is coordinated with DNA replication and chromosome segregation, and that its dosage is critical for gene expression and human development.  相似文献   

2.
We have identified truncating mutations in the human DLG3 (neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations.  相似文献   

3.
In the course of systematic screening of the X-chromosome coding sequences in 250 families with nonsyndromic X-linked mental retardation (XLMR), two families were identified with truncating mutations in BRWD3, a gene encoding a bromodomain and WD-repeat domain–containing protein. In both families, the mutation segregates with the phenotype in affected males. Affected males have macrocephaly with a prominent forehead, large cupped ears, and mild-to-moderate intellectual disability. No truncating variants were found in 520 control X chromosomes. BRWD3 is therefore a new gene implicated in the etiology of XLMR associated with macrocephaly and may cause disease by altering intracellular signaling pathways affecting cellular proliferation.  相似文献   

4.
Cohesin is a protein complex that plays an essential role in pairing replicated sister chromatids during cell division. The vertebrate cohesin complex consists of four core components including structure maintenance of chromosomes proteins SMC1 and SMC3, RAD21, and SA2/SA1. Extensive research suggests that cohesin traps the sister chromatids by a V-shaped SMC1/SMC3 heterodimer bound to the RAD21 protein that closes the ring. Accordingly, the single "ring" model proposes that two sister chromatids are trapped in a single ring that is composed of one molecule each of the 4 subunits. However, evidence also exists for alternative models. The hand-cuff model suggests that each sister chromatid is trapped individually by two rings that are joined through the shared SA1/SA2 subunit. We report here the determination of cohesin subunit stoichiometry of endogenous cohesin complex by quantitative mass spectrometry. Using qConCAT-based isotope labeling, we show that the cohesin core complex contains equimolar of the 4 core components, suggesting that each cohesin ring is closed by one SA1/SA2 molecule. Furthermore, we applied this strategy to quantify post-translational modification-dependent cohesin interactions. We demonstrate that quantitative mass spectrometry is a powerful tool for measuring stoichiometry of endogenous protein core complex.  相似文献   

5.
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused, in most classic cases, by mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2). A large degree of phenotypic variation has been observed in patients with RTT, both those with and without MECP2 mutations. We describe a family consisting of a proband with a phenotype that showed considerable overlap with that of RTT, her identical twin sister with autistic disorder and mild-to-moderate intellectual disability, and a brother with profound intellectual disability and seizures. No pathogenic MECP2 mutations were found in this family, and the Xq28 region that contains the MECP2 gene was not shared by the affected siblings. Three other candidate regions were identified by microsatellite mapping, including 10.3 Mb at Xp22.31-pter between Xpter and DXS1135, 19.7 Mb at Xp22.12-p22.11 between DXS1135 and DXS1214, and 16.4 Mb at Xq21.33 between DXS1196 and DXS1191. The ARX and CDKL5 genes, both of which are located within the Xp22 region, were sequenced in the affected family members, and a deletion of nucleotide 183 of the coding sequence (c.183delT) was identified in CDKL5 in the affected family members. In a screen of 44 RTT cases, a single splice-site mutation, IVS13-1G-->A, was identified in a girl with a severe phenotype overlapping RTT. In the mouse brain, Cdkl5 expression overlaps--but is not identical to--that of Mecp2, and its expression is unaffected by the loss of Mecp2. These findings confirm CDKL5 as another locus associated with epilepsy and X-linked mental retardation. These results also suggest that mutations in CDKL5 can lead to a clinical phenotype that overlaps RTT. However, it remains to be determined whether CDKL5 mutations are more prevalent in specific clinical subgroups of RTT or in other clinical presentations.  相似文献   

6.
Cornelia de Lange syndrome (CdLS) is a rare multisystem disorder characterized by facial dysmorphisms, limb anomalies, and growth and cognitive deficits. Mutations in genes encoding subunits (SMC1A, SMC3, RAD21) or regulators (NIPBL, HDAC8) of the cohesin complex account for approximately 65% of clinically diagnosed CdLS cases. The SMC1A gene (Xp11.22), responsible for 5% of CdLS cases, partially escapes X chromosome inactivation in humans and the allele on the inactive X chromosome is variably expressed. In this study, we evaluated overall and allele-specific SMC1A expression. Real-time PCR analysis conducted on 17 controls showed that SMC1A expression in females is 50% higher than in males. Immunoblotting experiments confirmed a 44% higher protein level in healthy females than in males, and showed no significant differences in SMC1A protein levels between controls and patients. Pyrosequencing was used to assess the reciprocal level of allelic expression in six female carriers of different SMC1A mutations and 15 controls who were heterozygous at a polymorphic transcribed SMC1A locus. The two alleles were expressed at a 1:1 ratio in the control group and at a 2:1 ratio in favor of the wild type allele in the test group. Since a dominant negative effect is considered the pathogenic mechanism in SMC1A-defective female patients, the level of allelic preferential expression might be one of the factors contributing to the wide phenotypic variability observed in these patients. An extension of this study to a larger cohort containing mild to borderline cases could enhance our understanding of the clinical spectrum of SMC1A-linked CdLS.  相似文献   

7.
《Epigenetics》2013,8(7):973-979
Cornelia de Lange syndrome (CdLS) is a rare multisystem disorder characterized by facial dysmorphisms, limb anomalies, and growth and cognitive deficits. Mutations in genes encoding subunits (SMC1A, SMC3, RAD21) or regulators (NIPBL, HDAC8) of the cohesin complex account for approximately 65% of clinically diagnosed CdLS cases. The SMC1A gene (Xp11.22), responsible for 5% of CdLS cases, partially escapes X chromosome inactivation in humans and the allele on the inactive X chromosome is variably expressed. In this study, we evaluated overall and allele-specific SMC1A expression. Real-time PCR analysis conducted on 17 controls showed that SMC1A expression in females is 50% higher than in males. Immunoblotting experiments confirmed a 44% higher protein level in healthy females than in males, and showed no significant differences in SMC1A protein levels between controls and patients. Pyrosequencing was used to assess the reciprocal level of allelic expression in six female carriers of different SMC1A mutations and 15 controls who were heterozygous at a polymorphic transcribed SMC1A locus. The two alleles were expressed at a 1:1 ratio in the control group and at a 2:1 ratio in favor of the wild type allele in the test group. Since a dominant negative effect is considered the pathogenic mechanism in SMC1A-defective female patients, the level of allelic preferential expression might be one of the factors contributing to the wide phenotypic variability observed in these patients. An extension of this study to a larger cohort containing mild to borderline cases could enhance our understanding of the clinical spectrum of SMC1A-linked CdLS.  相似文献   

8.
9.
10.
In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.  相似文献   

11.
In this report we describe a proximal 7q interstitial deletion in a 3-years-old moderately mentally retarded girl with mild dysmorphic features but absence of severe malformations.  相似文献   

12.
Partial duplication of 3q is a rare chromosomal disorder that leads to multiple congenital abnormalities such as growth retardation, microcephaly and characteristic facial features. Although the phenotype of the patient has similarities with Cornelia de Lange Syndrome they are etiologically different. We report here a 9 months old baby boy with partial duplication of 3q and features similar with Cornelia De Lange syndrome. Conventional cytogenetic analysis revealed a derivative chromosome 21. In order to determine the origin of this chromosome region we used subtelomeric FISH technique. Based on the results of all these cytogenetic studies and the physical examinations, the diagnosis is partial 3q duplication.  相似文献   

13.
Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed whole-exome sequencing to determine the underlying defect in a group of individuals with an inherited limb-girdle pattern of myasthenic weakness. We identify DPAGT1 as a gene in which mutations cause a congenital myasthenic syndrome. We describe seven different mutations found in five individuals with DPAGT1 mutations. The affected individuals share a number of common clinical features, including involvement of proximal limb muscles, response to treatment with cholinesterase inhibitors and 3,4-diaminopyridine, and the presence of tubular aggregates in muscle biopsies. Analyses of motor endplates from two of the individuals demonstrate a severe reduction of endplate acetylcholine receptors. DPAGT1 is an essential enzyme catalyzing the first committed step of N-linked protein glycosylation. Our findings underscore the importance of N-linked protein glycosylation for proper functioning of the neuromuscular junction. Using the DPAGT1-specific inhibitor tunicamycin, we show that DPAGT1 is required for efficient glycosylation of acetylcholine-receptor subunits and for efficient export of acetylcholine receptors to the cell surface. We suggest that the primary pathogenic mechanism of DPAGT1 mutations is reduced levels of acetylcholine receptors at the endplate region. These individuals share clinical features similar to those of congenital myasthenic syndrome due to GFPT1 mutations, and their disorder might be part of a larger subgroup comprising the congenital myasthenic syndromes that result from defects in the N-linked glycosylation pathway and that manifest through impaired neuromuscular transmission.  相似文献   

14.
In meiotic prophase, the sister chromatids of each chromosome develop a common axial element (AE) that is integrated into the synaptonemal complex (SC). We analyzed the incorporation of sister chromatid cohesion proteins (cohesins) and other AE components into AEs. Meiotic cohesin REC8 appeared shortly before premeiotic S phase in the nucleus and formed AE-like structures (REC8-AEs) from premeiotic S phase on. Subsequently, meiotic cohesin SMC1beta, cohesin SMC3, and AE proteins SCP2 and SCP3 formed dots along REC8-AEs, which extended and fused until they lined REC8-AEs along their length. In metaphase I, SMC1beta, SMC3, SCP2, and SCP3 disappeared from the chromosome arms and accumulated around the centromeres, where they stayed until anaphase II. In striking contrast, REC8 persisted along the chromosome arms until anaphase I and near the centromeres until anaphase II. We propose that REC8 provides a basis for AE formation and that the first steps in AE assembly do not require SMC1beta, SMC3, SCP2, and SCP3. Furthermore, SMC1beta, SMC3, SCP2, and SCP3 cannot provide arm cohesion during metaphase I. We propose that REC8 then provides cohesion. RAD51 and/or DMC1 coimmunoprecipitates with REC8, suggesting that REC8 may also provide a basis for assembly of recombination complexes.  相似文献   

15.
We have identified one frameshift mutation, one splice-site mutation, and two missense mutations in highly conserved residues in ZDHHC9 at Xq26.1 in 4 of 250 families with X-linked mental retardation (XLMR). In three of the families, the mental retardation phenotype is associated with a Marfanoid habitus, although none of the affected individuals meets the Ghent criteria for Marfan syndrome. ZDHHC9 is a palmitoyltransferase that catalyzes the posttranslational modification of NRAS and HRAS. The degree of palmitoylation determines the temporal and spatial location of these proteins in the plasma membrane and Golgi complex. The finding of mutations in ZDHHC9 suggests that alterations in the concentrations and cellular distribution of target proteins are sufficient to cause disease. This is the first XLMR gene to be reported that encodes a posttranslational modification enzyme, palmitoyltransferase. Furthermore, now that the first palmitoyltransferase that causes mental retardation has been identified, defects in other palmitoylation transferases become good candidates for causing other mental retardation syndromes.  相似文献   

16.
We report on an autosomal-recessive variant of Ehlers-Danlos syndrome (EDS) characterized by severe muscle hypotonia at birth, progressive scoliosis, joint hypermobility, hyperelastic skin, myopathy, sensorineural hearing impairment, and normal pyridinoline excretion in urine. Clinically, the disorder shares many features with the kyphoscoliotic type of EDS (EDS VIA) and Ullrich congenital muscular dystrophy. Linkage analysis in a large Tyrolean kindred identified a homozygous frameshift mutation in FKBP14 in two affected individuals. Based on the cardinal clinical characteristics of the disorder, four additional individuals originating from different European countries were identified who carried either homozygous or compound heterozygous mutations in FKBP14. FKBP14 belongs to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases). ER-resident FKBPs have been suggested to act as folding catalysts by accelerating cis-trans isomerization of peptidyl-prolyl bonds and to act occasionally also as chaperones. We demonstrate that FKBP14 is localized in the endoplasmic reticulum (ER) and that deficiency of FKBP14 leads to enlarged ER cisterns in dermal fibroblasts in vivo. Furthermore, indirect immunofluorescence of FKBP14-deficient fibroblasts indicated an altered assembly of the extracellular matrix in vitro. These findings suggest that a disturbance of protein folding in the ER affecting one or more components of the extracellular matrix might cause the generalized connective tissue involvement in this disorder. FKBP14 mutation analysis should be considered in all individuals with apparent kyphoscoliotic type of EDS and normal urinary pyridinoline excretion, in particular in conjunction with sensorineural hearing impairment.  相似文献   

17.
18.
Cerebellar hypoplasia, mild mental retardation, skeletal abnormalities, and ataxia were present in a 40 years old patient with a complex chromosome rearrangement (CCR). Chromosomes 2, 5, 16, and 17 were involved in the CCR. For the definition of the eight breakpoints leading to the rearrangement FISH with whole chromosomes paintings and specific telomeric probes was employed. Gene disruption, positional effect variegation, and sub-microscopic deletions are all possible causes for the abnormal phenotype observed in the patient.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号