首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaching the limit of cell divisions, a phenomenon referred to as replicative aging, of the yeast Saccharomyces cerevisiae involves a progressive increase in the cell volume. However, the exact relationship between the number of cell divisions accomplished (replicative age), the potential for further divisions and yeast cell volume has not been investigated thoroughly. In this study an increase of the yeast cell volume was achieved by treatment with pheromone alpha for up to 18 h. Plotting the number of cell divisions (replicative life span) of the pheromone-treated cells as a function of the cell volume attained during the treatment showed an inverse linear relationship. An analogous inverse relationship between the initial cell volume and replicative life span was found for the progeny of the pheromone-treated yeast. This phenomenon indicates that attaining an excessive volume may be a factor contributing to the limitation of cellular divisions of yeast cells.  相似文献   

2.
We have examined the kinetic relationship between the rate of entry into the S phase in human diploid fibroblast-like (HDFL) monokaryon cells and (1) the concentration of DNA polymerase alpha activity and (2) the cell volume. In the former studies, a first-order dependence between the rate of entry into the S phase and the concentration of DNA polymerase alpha activity was observed, consistent with the enzyme, or a coregulated factor, being rate limiting for this metabolic process. Examination of the nature of the dependence of the rate of entry into the S phase upon cell volume revealed a more complex relationship. The results obtained in studies with synchronized cultures are consistent with the presence of two to three rate-limiting reactants when cell volume is the independent variable. Studies with asynchronous HDFL cell cultures revealed that the smallest cells in the G1 population, presumably the early G1 cells, enter the S phase at an increasing rate as a function of cell volume up to a certain size, beyond which the cells enter at a decreasing rate similar to that observed in the studies with the synchronized cultures. Similar studies examining the relationship between cell volume and the rate of entry into S phase in three established immortal cell lines revealed positive correlation between the rate of entry into S phase and cell volume throughout the size range of the G1 population. This latter observation suggests that the factors involved in the initiation of the S phase may be present in concentrations that are not rate limiting in immortal cell lines.  相似文献   

3.
During T cell activation, mitochondrial content increases to meet the high energy demand of rapid cell proliferation. With this increase, the level of reactive oxygen species (ROS) also increases and causes the rapid apoptotic death of activated cells, thereby facilitating T cell homeostasis. Nicotinamide (NAM) has previously been shown to enhance mitochondria quality and extend the replicative life span of human fibroblasts. In this study, we examined the effect of NAM on CD8+ T cell activation. NAM treatment attenuated the increase of mitochondrial content and ROS in T cells activated by CD3/CD28 antibodies. This was accompanied by an accelerated and higher-level clonal expansion resulting from attenuated apoptotic death but not increased division of the activated cells. Attenuation of ROS-triggered pro-apoptotic events and upregulation of Bcl-2 expression appeared to be involved. Although cells activated in the presence of NAM exhibited compromised cytokine gene expression, our results suggest a means to augment the size of T cell expansion during activation without consuming their limited replicative potential.  相似文献   

4.
When cells from mass cultures of chick embryo fibroblasts are grown at very low density, some cells yield large clones while others produce smaller clones, and some cells fail to divide at all. the distribution of clone sizes is related to the number of population doublings which the donor mass culture has undergone: the more doublings which have occurred, the smaller the average clone size. In this report we describe a model which analyses this phenomenon, referred to as ‘clonal attenuation’, in detail. The model is based on the concept that a cell with hypothetically unlimited replicative potential—i.e. a ‘stem’ cell—can become ‘committed’ to a programme of limited replicative potential. This event is assumed to be stochastic and to have a fixed probability per stem cell division. the parameters of the model are: Pc, the probability of commitment; N, the number of differentiative divisions; and Tc, the cell-cycle times. By computer simulation, it is shown that Pc increases roughly exponentially at each successive stem cell division. According to the model, when the daughter of a stem cell becomes committed, its progeny proceed through N obligatory divisions before becoming terminally differentiated (post-mitotic). the best-fit value of N was found to be seven. The simulations also reveal that the absolute number of stem cells in the total population increases for most of the lifespan of the culture. When Pc becomes much greater than 0.5, the number of stem cells declines rapidly to zero, and the culture nears senescence. Sensitivity analysis shows that Pc can assume only a limited range of values at each stem-cell division.  相似文献   

5.
In healthy adult mice, the beta cell population is not maintained by stem cells but instead by the replication of differentiated beta cells. It is not known, however, whether all beta cells contribute equally to growth and maintenance, as it may be that some cells replicate while others do not. Understanding precisely which cells are responsible for beta cell replication will inform attempts to expand beta cells in vitro, a potential source for cell replacement therapy to treat diabetes. Two experiments were performed to address this issue. First, the level of fluorescence generated by a pulse of histone 2B-green fluorescent protein (H2BGFP) expression was followed over time to determine how this marker is diluted with cell division; a uniform loss of label across the entire beta cell population was observed. Second, clonal analysis of dividing beta cells was completed; all clones were of comparable size. These results support the conclusion that the beta cell pool is homogeneous with respect to replicative capacity and suggest that all beta cells are candidates for in vitro expansion. Given similar observations in the hepatocyte population, we speculate that for tissues lacking an adult stem cell, they are replenished equally by replication of all differentiated cells.  相似文献   

6.
G Li  M Simm  M J Potash    D J Volsky 《Journal of virology》1993,67(7):3969-3977
Human immunodeficiency virus type 1 (HIV-1) replicates efficiently in nonproliferating monocytes and macrophages but not in resting primary T lymphocytes. To determine the contribution of cell division to the HIV-1 replicative cycle in T cells, we evaluated HIV-1 expression, integration of proviral DNA, and production of infectious progeny virus in C8166 T-lymphoid cells blocked in cell division by treatment with either mitomycin, a DNA cross-linker, or aphidicolin, a DNA polymerase alpha inhibitor. The arrest of cell division was confirmed by assay of [3H]thymidine uptake; the nondividing cells remained viable for at least 3 days after treatment. HIV-1 was expressed and replicated equally well in nondividing and dividing C8166 cells, as judged by the comparison of the levels of p24 core antigens in culture supernatants, the proportion of cells expressing HIV-1 specific antigens, the pattern and quantity of HIV-1 DNA present in the extrachromosomal and total cellular DNA fractions, and the biological activity of progeny viruses. A polymerase chain reaction-based viral DNA integration assay indicated that HIV-1 provirus was integrated in C8166 cells treated with either of the two inhibitors of cell division. Similar results were obtained by using growth-arrested Jurkat T-lymphoid cells. We conclude that cell division and cellular DNA synthesis are not required for efficient HIV-1 expression in T cells.  相似文献   

7.
8.
The yeast Saccharomyces cerevisiae cell surface outside of the bud scars displayed an increasing fluorescence intensity with increasing cell size (volume), where fluorescence was due to irreversible binding of the fluorescent dye calcofluor. The increase in fluorescence intensity appeared to be due to an increase in the density of fluorescence per unit surface area of the cell. Exposure time measurements from a photomicroscope were used to quantitate fluorescence intensity on individual cells. The cell size dependent increase in fluorescence intensity was displayed by unbudded cells from stationary phase populations, and unbudded and parent cells from exponentially growing populations. Abnormally large cells generated during the arrest of cell division with alpha-factor or restrictive temperature for cdc3, 8, 13, 24, and 28 cell division cycle mutants, displayed significantly greater fluorescence intensity compared to the smaller cells generated during the arrest of division for cdc25, 33, and 35 mutant strains. Fluorescence intensity on newly emerging buds was broadly dependent on both the size of the bud, and the size of the parent cells on which the buds were growing.  相似文献   

9.
It has been reported that the replicative lifespan of human fibroblasts can be substantially extended by supplementing the growth medium with hydrocortisone or increased levels of serum proteins. These observations have been made only on cell populations transferred many times at high cell density, and cumulative population doublings have been recorded, rather than a more direct measure of cell division potential. We have measured the replicative potential of human fibroblasts cultured so as to avoid conditions of high cell density, medium depletion, and departure from exponential growth. Two fetal lung and two newborn foreskin fibroblast strains were serially passaged in the presence or absence of hydrocortisone (HC), epidermal growth factor (EGF), and fibroblast growth factor (FGF) until they senesced. At each passage cells were plated at densities sufficiently low that colony-forming efficiency could be calculated. We determined cumulative population doublings and also estimated the number of cell generations attained under each condition. FGF caused small but possibly significant changes, while HC and EGF failed to substantially alter replicative lifespan. The reported effect of HC on the doubling potential of fetal lung fibroblasts is therefore not an inevitable action of this hormone on the senescence mechanism, but may instead depend for its apparent activity on the passage regimen used. The fibroblast's insensitivity to EGF as a modulator of replicative potential, as compared with the keratinocyte, whose lifespan can be tripled by EGF, implies that the mechanisms limiting the replicative potential of these two cell types are not identical.  相似文献   

10.
The phenomenon of delayed heritable lethal damage (often referred to as ``lethal mutations') in the progeny of cells which survive irradiation is now well established, but little is known of the mechanism by which this cell death occurs. Current theories suggest a generalised genomic instability affecting all cells which leads to the production of some mutations which are lethal, or alternatively that a lethal mutation gene is activated, mutated or induced by radiation and leads to persistent and random cell death at high levels in the progeny. The aim of this study was to look at the morphology of progeny of irradiated cells at various times after irradiation to establish how widespread morphological abnormalities were in the population and whether there was any evidence that such abnormalities were clonal. Using two different cell lines, the results showed that morphological evidence possibly suggestive of apoptosis occurred in the cultures after all doses of radiation and up to 45 cell doublings after exposure. There was no evidence of a decrease in the numbers of damaged or dead cells in colonies with number of divisions after irradiation, or with decreasing original radiation dose. There was a significant dose-dependent increase in the number of cells with microvilli for both cell lines. The dose-dependency of this effect did not change with number of divisions after irradiation. It is clear that morphological evidence of cellular damage persists for several generations after the initial exposure. The effects are widespread in the cell population, and their constancy over time argues strongly for a general instability and against a clonal mechanism, since clonal descendants should die out and leave undamaged survivors. The lack of evidence for necrosis or senescence together with many morphological changes in the cultures suggestive of apoptosis could indicate an active mechanism of cell death. It is concluded that survivor populations of irradiated cells from two widely different mammalian cell lines demonstrate an altered phenotype including gross morphological changes. These result in a higher probability that cell division will fail to yield two healthy progeny. Received: 22 January 1996 / Accepted in revised form: 24 September 1996  相似文献   

11.
Cells of different organs at different ages have an intrinsic set of kinetics that dictates their behavior. Transformation into cancer cells will inherit these kinetics that determine initial cell and tumor population progression dynamics. Subject to genetic mutation and epigenetic alterations, cancer cell kinetics can change, and favorable alterations that increase cellular fitness will manifest themselves and accelerate tumor progression. We set out to investigate the emerging intratumoral heterogeneity and to determine the evolutionary trajectories of the combination of cell-intrinsic kinetics that yield aggressive tumor growth. We develop a cellular automaton model that tracks the temporal evolution of the malignant subpopulation of so-called cancer stem cells(CSC), as these cells are exclusively able to initiate and sustain tumors. We explore orthogonal cell traits, including cell migration to facilitate invasion, spontaneous cell death due to genetic drift after accumulation of irreversible deleterious mutations, symmetric cancer stem cell division that increases the cancer stem cell pool, and telomere length and erosion as a mitotic counter for inherited non-stem cancer cell proliferation potential. Our study suggests that cell proliferation potential is the strongest modulator of tumor growth. Early increase in proliferation potential yields larger populations of non-stem cancer cells(CC) that compete with CSC and thus inhibit CSC division while a reduction in proliferation potential loosens such inhibition and facilitates frequent CSC division. The sub-population of cancer stem cells in itself becomes highly heterogeneous dictating population level dynamics that vary from long-term dormancy to aggressive progression. Our study suggests that the clonal diversity that is captured in single tumor biopsy samples represents only a small proportion of the total number of phenotypes.  相似文献   

12.
All β Cells Contribute Equally to Islet Growth and Maintenance   总被引:3,自引:0,他引:3  
In healthy adult mice, the β cell population is not maintained by stem cells but instead by the replication of differentiated β cells. It is not known, however, whether all β cells contribute equally to growth and maintenance, as it may be that some cells replicate while others do not. Understanding precisely which cells are responsible for β cell replication will inform attempts to expand β cells in vitro, a potential source for cell replacement therapy to treat diabetes. Two experiments were performed to address this issue. First, the level of fluorescence generated by a pulse of histone 2B–green fluorescent protein (H2BGFP) expression was followed over time to determine how this marker is diluted with cell division; a uniform loss of label across the entire β cell population was observed. Second, clonal analysis of dividing β cells was completed; all clones were of comparable size. These results support the conclusion that the β cell pool is homogeneous with respect to replicative capacity and suggest that all β cells are candidates for in vitro expansion. Given similar observations in the hepatocyte population, we speculate that for tissues lacking an adult stem cell, they are replenished equally by replication of all differentiated cells.  相似文献   

13.
Mammalian somatic cells and also cells of the yeast Saccharomyces cerevisiae are capable of undergoing a limited number of divisions. Reaching the division limit is referred to, apparently not very fortunately, as replicative aging. A common feature of S. cerevisiae cells and fibroblasts approaching the limit of cell divisions in vitro is attaining giant volumes. In yeast cells this phenomenon is an inevitable consequence of budding so it is not causally related to aging. Therefore, reaching a critically large cell volume may underlie the limit of cell divisions. A similar phenomenon may limit the number of cell divisions of cultured mammalian cells. The term replicative (generative) aging may be therefore illegitimate.  相似文献   

14.
The effect of the copy number of plasmid R1drd-19 on cell division of Escherichia coli K-12 was studied in populations growing as steady-state cultures at different growth rates, the growth rate being varied by use of different carbon sources. The plasmid copy number was also varied by using copy mutants of the R-factor. The mean cell size was larger in populations carrying an R-factor than in R-factorless populations, an effect that was more pronounced at low growth rates and in populations carrying R-factor copy mutants. The increased cell size was due to formation of elongated cells in a fraction of the population and to an increase in the diameter of all cells. The majority of the cells divided at a normal cell length, but the presence of an R-factor caused some cells to elongate, probably by the uncoupling of chromosome replication and cell division. This can be explained as a competition between the chromosome and plasmid replicons for some replication factor(s), presumably acting on both initiation and elongation of replication. The formation of elongated cells was a reversible process, but occasionally some of the elongated cells reached lengths 20 times that of newborn cells. If cell division did not occur at the normal cell size, the septum was not formed until the cell size was four times that of a newborn cell. When an elongated cell divided, it usually formed a polar septum, thus producing a newborn cell of normal cell length. The ability of plasmid-containing cells to omit one cell division but to retain the capacity of dividing one mass doubling later is compatible with a mechanical model for septum formation and cell division.  相似文献   

15.
Chick embryo fibroblasts serially propagated in media containing division ratelimiting amounts of fetal bovine serum underwent premature culture senescence as illustrated by accelerated declines in the number of cells incorporating 3H-thymidine, increased population doubling times, reduced cell densities at subcultivation, and reduced replicative life-spans compared to cells grown in medium containing non-rate-limiting amounts of serum. Low serum serially propagated “senescent” cultures returned to 10% serum containing medium had proliferative rates, incorporated 3H-thymidine, and attained saturation densities at confluency similar to younger cells. “Senescent” cells serially propagated in low serum and returned to 10% serum achieved life-spans similar to cells continuously grown in the presence of 10% serum. The results of these and other studies show that cells serially propagated in the presence of division rate-limiting amounts of fetal bovine serum, or at high inoculation densities, accumulate a substantial number of cells in the population during exponential growth conditions that are not senescent but are prevented from entering DNA synthesis becuase of mitogen limitations. Our results indicate that the amount of serum mitogen in the growth medium affects only the rate at which cells express their genetically predetermined replicative potential and not the replicative lifespan per se. These results are discussed in relation to the techniques that should be employed for studying cellular aging and the mechanism of senescent cell formation.  相似文献   

16.
We have previously reported that the DNA polymerase alpha activity/unit cellular protein is decreased in late-passage (senescent) human diploid fibroblast-like (HDFL) cultures due to the cellular enlargement associated with in vitro aging. In the studies described here, we have used cell fusion technology to investigate the formal kinetic relationship between the concentration of DNA polymerase alpha and the rate of reinitiation of DNA synthesis in nuclei from senescent cells. Heterokaryons were derived from the fusion of senescent cells to a series of actively dividing cell types with inherently different DNA polymerase alpha activities per cell. A kinetic analysis revealed a first-order relationship between the entry into S phase of senescent nuclei and the concentration of DNA polymerase alpha activity calculated to be in heterokaryons. This result suggests that increases in cell volume may be related to the decline in proliferative activity of late-passage HDFL cells, via "dilution" of factors essential for cellular replication.  相似文献   

17.
Rustigian, Robert (Tufts University School of Medicine, Boston, Mass.). Persistent infection of cells in culture by measles virus. I. Development and characteristics of HeLa sublines persistently infected with complete virus. J. Bacteriol. 92:1792-1804. 1966.-After the development of marked cytopathic effects in HeLa cultures infected with the Edmonston strain of measles virus, renewed cell growth occurred, and HeLa sublines persistently infected with measles virus were obtained. Persistent infection has occurred in a large fraction of the cells of infected clonal lines for more than 300 to 500 cell generations during a period of 6 years. One mechanism by means of which infection was maintained in the clonal lines is transmission of virus or viral subunits from cell to cell at division. Continued subculture of the persistently infected populations resulted in the virtual disappearance of cytopathic effects, a marked decrease in the amount of extracellular virus, and alterations in the cytopathogenicity of virus recovered from persistently infected populations. The intracellular virus-host cell events in late passages of the infected clonal lines appeared to be similar to those in cells of primary infected cultures at early stages of infection, as judged by the pattern of viral immunofluorescence and the very low incidence of cells with intranuclear inclusion bodies. Cultures of the persistently infected clonal lines were highly resistant to super infection by parent Edmonston virus. Cultures of one of these clonal lines were just as susceptible as normal HeLa cultures to vaccinia, herpes simplex, and polio type 2 viruses, and a simian agent, with a possible low degree of resistance to the simian agent.  相似文献   

18.
SUMMARY. The nocturnal phasing and partial synchrony of cell division in Ceratium hirundinella was investigated on four occasions for dense planktonic populations in a small productive lake (Esthwaite Water). The population growth rates deduced from the proportion of cells dividing per day are compared with the rates of increase of cell density in the lake. The maximum proportion of Ceratium cells found dividing at any time was 5.8 ± 1.0%, and the time of optimum division was 03.00 hours G.M.T. The daily rate of division during the main phase of population increases was similar to that deduced from the overall population increments at that time, although during the week of collection the increase had apparently ceased temporarily. On the other three occasions, either increase of cell numbers had ceased or the population was declining, but a continued low rate of division ( c . 3% day−1) was found.
The nocturnal division of Ceratium in Esthwaite Water is compared with the division phasing of dinaflagellates described from elsewhere. Some general problems associated with the derivation of estimates of population growth rate from division frequency are also considered.  相似文献   

19.
Byers DL  Warsaw A  Meagher TR 《Heredity》2005,95(1):69-75
Habitat fragmentation of prairie ecosystems has resulted in increased isolation and decreased size of plant populations. In large populations, frequency-dependent selection is expected to maintain genetic diversity of sex determining factors associated with gynodioecy, that is, nuclear restorer genes that reverse cytoplasmic male sterility (nucleocytoplasmic gynodioecy). However, genetic drift will have a greater influence on small isolated populations that result from habitat fragmentation. The genetic model for nucleocytoplasmic gynodioecy implies that the proportion of female progeny produced by hermaphroditic and female plants will show more extreme differences in populations with reduced allelic diversity, and that restoration of male function will increase with inbreeding. We investigated potential impacts of effects resulting from reduced population sizes by comparison of progeny sex ratios produced by female and hermaphroditic plants in small and large populations of the gynodioecious prairie species, Lobelia spicata. A four-way contingency analysis of the impact of population size, population sex ratio, and maternal gender on progeny sex ratios showed that progeny sex ratios of hermaphroditic plants were strongly influenced by population size, whereas progeny sex ratios of female plants were strongly influenced by population sex ratio. Further, analysis of variation in progeny-type distribution indicated decreased restoration and increased loss of male function in smaller and isolated populations. These results are consistent with reduced allelic diversity or low allelic frequency at restorer loci in small and isolated populations. The consequent decrease in male function has the potential to impede seed production in these fragmented prairies.  相似文献   

20.
The direct and indirect effects of vegetative herbivory on the mating system of Impatiens capensis were analyzed through a survey of herbivory in natural I. capensis populations and manipulation of leaf damage in the field. Across 10 wild populations of I. capensis proportion of cleistogamous flowers had a significant positive exponential relationship with natural levels of herbivory. Similarly, experimental leaf damage increased the proportion of flowers and seeds that were cleistogamous. Leaf damage also reduced the biomass of cleistogamous progeny more severely relative to that of chasmogamous progeny. The cumulative effect of leaf damage was to increase plant reliance on fitness derived from cleistogamous progeny. Leaf damage indirectly affected mating system traits by reducing chasmogamous flower size, leading to a reduction in pollinator visitation. Under these experimental conditions, herbivory did not significantly reduce the number of simultaneously open flowers and potential for geitonogamy, nor did it result in significant changes in the composition of the pollinator fauna. These findings are among the first to demonstrate that herbivory has consequences for mating system and should be considered a factor shaping mating system evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号