首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Many living primates that feed on hard food have been observed to have thick-enameled molars. Among platyrrhine primates, members of the tribe Pitheciini (Cacajao, Chiropotes, and Pithecia) are the most specialized seed and nut predators, and Cebus apella also includes exceptionally hard foods in its diet. To examine the hypothesized relationship between thick enamel and hard-object feeding, we sectioned small samples of molars from the platyrrhine primates Aotus trivergatus, Ateles paniscus, Callicebus moloch, Cebus apella, Cacajao calvus, Chiropotes satanas, Pithecia monachus, and Pithecia pithecia. We measured relative enamel thickness and examined enamel microstructure, paying special attention to the development of prism decussation and its optical manifestation, Hunter-Schreger Bands (HSB). Cebus apella has thick enamel with well-defined but sinuous HSB overlain by a substantial layer of radial prisms. Aotus and Callicebus have thin enamel consisting primarily of radial enamel with no HSB, Ateles has thin enamel with moderately developed HSB and an outer layer of radial prisms, and the thin enamel of the pitheciins (Cacajao, Chiropotes, and Pithecia) has extremely well-defined HSB. Among platyrrhines, two groups that feed on hard objects process these hard foods in different ways. Cebus apella masticates hard and brittle seeds with its thick-enameled cheek teeth. Pitheciin sclerocarpic foragers open hard husks with their canines but chew relatively soft and pliable seeds with their molars. These results reveal that thick enamel per se is not a prerequisite for hard object feeding. The Miocene hominoid Kenyapithecus may have included hard objects in its diet, but its thick-enameled molars indicate that its feeding adaptations differed from those of the pitheciins. The morphology of both the anterior and posterior dentition, including enamel thickness and microstructure, should be taken into consideration when inferring the dietary regime of fossil species.  相似文献   

2.
The ability of prisms to effectively dissipate contact stress at the surface will influence wear rates in teeth. The aim of this investigation was to begin to quantify the effect of prism orientation on surface stresses. Seven finite element models of enamel microstructure were created, each model differing in the angulation of prism orientation with regard to the wear surface. For validation purposes, the mechanical behavior of the model was compared with published experimental data. In order to test the enamel under lateral loads, a compressed food particle was dragged across the surface from the dentino-enamel junction (DEJ) towards the outer enamel surface (OES). Under these conditions, tensile stresses in the enamel model increased with increases in the coefficient of friction. More importantly, stresses were found to be lowest in models in which the prisms approach the surface at lower angles (i.e., more obliquely cut prisms), and highest when the prisms approached the surface at 60 degrees (i.e., less obliquely cut). Finally, the direction of travel of the simulated food particle was reversed, allowing comparison of the difference in behavior between trailing and leading edge enamels (i.e., when the food particle was dragged either towards or away from the DEJ). Stresses at the trailing edge were usually lower than stresses at the leading edge. Taken together with what is known about prism orientation in primate teeth, such findings imply greater wear resistance at the intercuspal region and less wear resistance at the lateral enamel at midcrown. Such findings appear to be supported by archeological evidence.  相似文献   

3.
Maxillary and mandibular molars of the American opossum, Didelphis virginiana L., were viewed in the scanning electron microscope (SEM) after acid-etching or after cutting and acid-etching. Observations were made on enamel prism patterns as they relate to functional properties of the tooth at a particular site. Molars at different stages of wear were also observed under a dissecting microscope; worn surfaces were correlated with function and enamel ultrastructure. Pounding surfaces of molar cusps wear more rapidly than near-vertical shearing surfaces or crushing basins (i.e. the trigon and talonid basin). Pounding surfaces are subjected to abrasion by food and arc not normally involved in tooth-tooth contact. Near-vertical shearing surfaces and basins used for crushing do experience tooth-tooth contact, but are surprisingly more resistant to wear. Prisms at pounding sites approach the occlusal surface at a near 90° angle and are surrounded with very thick interprismatic (IP) enamel parallel to the occlusal surface of the tooth. The pounding pattern is present at tips of cusps and at occlusal surfaces of ridges of the tooth. At near-vertical shearing surfaces, the prisms approach the outer surface obliquely and are surrounded with IP crystals which are perpendicular to the vertical surface. The angle between prismatic and IP enamel in these patterns is 60–90° in a cervical to occlusal direction. In basins of the tooth used principally for crushing and some shearing, IP enamel is perpendicular to the changing slope of the basin and the prisms are usually at a 55–65° angle to the IP enamel. When the pounding and shearing-crushing patterns meet at a ridge, a distinct seam is observed. Pounding forces occur parallel to the long axis of the prisms and perpendicular to the thick IP enamel (i.e. perpendicular to the long axis of the IP crystals) lying on either side of the prisms. Shearing and crushing forces occur at an oblique angle to the prism, and interprismatic enamel is more evenly distributed about the prism. A spiral pattern is found at the bottoms of the trigon and talonid basins, but not at the bottom of the trigonid which is a non-occluding basin. It is concluded that the differential rates of wear of the enamel surfaces are necessary in maintaining the sharp cutting edges and effective crushing basins of the tribosphenic molar, and the ultrastructural arrangements of the enamel prisms are of functional significance.  相似文献   

4.
The enamel structure of 16 creodont genera was examined by light microscopy and for 3 by scanning electron microscopy. All creodonts have prismatic enamel where prisms decussate in layers forming Hunter-Schreger-Bands (HSB). As only limited material was accessible to sectioning, the main emphasis is given to the appearance of HSB. As in other carnivorous mammals three types of HSB can be distinguished: undulating HSB, acute-angled HSB and zigzag HSB, which differ in their waviness in the horizontal course. Within the evolution of creodonts the amount of zigzag HSB in the teeth increased in hyaenodontids and oxyaenids respectively. This can be attributed to different loading conditions of the teeth due to various food types and the resulting bite forces. Tendencies to ossiphagous feeding habits correlate with zigzag HSB. The same general trends can be seen in 5 examined genera of the Arctocyonidae and Mesonychidae.  相似文献   

5.
6.
The dentino-enamel junction (DEJ) constitutes a structurally unique interphase uniting two mineralized tissues with very different matrix composition and physical properties. Its excellent biomechanical properties have drawn interest as a biomimetic model for joining dissimilar materials. In order to characterize the functional width of the DEJ, nanoscratching experiments were performed on human third molars. Friction coefficients of enamel, of dentin, and at the DEJ were obtained with a nanoscratch tester attached to an atomic force microscope (AFM). Normal loads in the range of 50 to 600 microN were applied to a spherical diamond indenter (r = 10 microm), which was driven 10 microm across the sample surface, recording the lateral force. Imaging with an AFM facilitated exact positioning of the scratches. The friction coefficient of intertubular dentin was 0.31 +/- 0.05, significantly above the coefficient of enamel of 0.14 +/- 0.02. The increased friction of dentin is attributed to the higher content of organic phases. Scratches performed across the interphase between enamel and dentin showed a sharp monotonic change in the friction coefficient. The average width of the slope between the friction coefficients of dentin and enamel was 2.0 +/- 1.1 microm and is assumed to represent the functional width of the dentino-enamel junction. The effect of the scalloped structure of the DEJ on its functional width as determined by mechanical testing is discussed.  相似文献   

7.
The dentition of Cambaytherium was investigated in terms of dental wear, tooth replacement and enamel microstructure. The postcanine tooth row shows a significant wear gradient, with flattened premolars and anterior molars at a time when the last molars are only little worn. This wear gradient, which is more intensive in Cambaytherium thewissi than in Cambaytherium gracilis, and the resulting flattened occlusal surfaces, may indicate a preference for a durophagous diet. The tooth replacement (known only in C. thewissi) shows an early eruption of the permanent premolars. They are in function before the third molars are fully erupted. During the dominant phase I of the chewing cycle the jaw movement is very steep, almost orthal, with a slight mesiolingual direction and changes into a horizontal movement during phase II. The enamel microstructure shows Hunter-Schreger-bands (HSB) in the inner zone of the enamel. In some teeth the transverse orientation of the HSB is modified into a zig-zag pattern, possibly an additional indicator of a durophagous diet.  相似文献   

8.
Rat molar enamel has been studied by sectioning the enamel along various planes, and observing the etched surfaces in the SEM. It was found that the prism pattern was much more variable than in rat incisor enamel. Regions without prism decussation seemed to dominate in the occlusal half of the molars. Where present, prism decussation was of the uniserial lamellar type, but it varied considerably in distribution, extent, and distinctness. Prism decussation seemed to have a predilection for the cervical enamel, and was almost absent in the enamel on the occlusal surface. The interprismatic substance showed a characteristic configuration: In the inner enamel it appeared in the form of radially oriented sheets, which tended to delimit radially directed, single lines of prisms. In regions with prism decussation these single lines of prisms encompassed prisms belonging to different prism lamellae. In the outer part of the enamel the interprismatic substance exhibited a honeycomb appearance. The similarities and differences between the prism patterns of rat incisor and molar enamel may be of importance for understanding the mechanisms of amelogenesis, especially for the recognition of factors controlling the movement of ameloblasts.  相似文献   

9.
Teeth contain several calcified tissues with junctions that provide interfaces between dissimilar tissues. These junctions have been difficult to characterize because of their small size. In this work a new technique using a combination of atomic force microscopy (AFM) and a force-displacement transducer was used to simultaneously study the surface topography and map mechanical properties of the junctions and adjacent hard tissues. Prepared specimens from human third molars were scanned by an AFM piezo-tube in contact mode. To measure the dynamic viscoelastic properties of the material a small sinusoidal force was superimposed on the contact force and the resulting displacement amplitude and the phase shift between the force and amplitude were measured. This force modulation technique was used to map the local variation of nanomechanical properties of intertubular dentin, peritubular dentin, enamel, dentin-enamel junction (DEJ) and peritubular-intertubular dentin junction (PIJ). This new technique allowed us to measure the widths of these junctions in addition to local variation in dentin and enamel without causing plastic deformation to the material and with 2 orders of magnitude increase in spatial resolution compared with previous studies that used discrete nanoindentation techniques. Due to the ability to analyze the sample line-by-line, the distribution functions associated with the width of the DEJ and PIJ were conveniently obtained for specific intratooth locations. The data suggested, for three third molar specimens, a DEJ width of 2-3 microm with full-width half-maximum (FWHM) of 0.7 microm and PIJ width of 0.5-1.0 microm with 0.3 microm FWHM. The intertubular dentin storage modulus variation was between 17 and 23 GPa with a mean value of 21 GPa. The range of storage modulus for enamel near the DEJ was between 51 and 74 GPa with a mean value of 63 GPa.  相似文献   

10.
The form of two hard tissues of the mammalian tooth, dentine and enamel, is the result of a combination of the phylogenetic inheritance of dental traits and the adaptive selection of these traits during evolution. Recent decades have been significant in unveiling developmental processes controlling tooth morphogenesis, dental variation and the origination of dental novelties. The enamel-dentine junction constitutes a precursor for the morphology of the outer enamel surface through growth of the enamel cap which may go along with the addition of original features. The relative contribution of these two tooth components to morphological variation and their respective response to natural selection is a major issue in paleoanthropology. This study will determine how much enamel morphology relies on the form of the enamel-dentine junction. The outer occlusal enamel surface and the enamel-dentine junction surface of 76 primate second upper molars are represented by polygonal meshes and investigated using tridimensional topometrical analysis. Quantitative criteria (elevation, inclination, orientation, curvature and occlusal patch count) are introduced to show that the enamel-dentine junction significantly constrains the topographical properties of the outer enamel surface. Our results show a significant correlation for elevation, orientation, inclination, curvature and occlusal complexity between the outer enamel surface and the enamel dentine junction for all studied primate taxa with the exception of four modern humans for curvature (p<0.05). Moreover, we show that, for all selected topometrical parameters apart from occlusal patch count, the recorded correlations significantly decrease along with enamel thickening in our sample. While preserving tooth integrity by providing resistance to wear and fractures, the variation of enamel thickness may modify the curvature present at the occlusal enamel surface in relation to enamel-dentine junction, potentially modifying dental functionalities such as blunt versus sharp dental tools. In terms of natural selection, there is a balance between increasing tooth resistance and maintaining efficient dental tools. In this sense the enamel cap acts as a functional buffer for the molar occlusal pattern. In primates, results suggest a primary emergence of dental novelties on the enamel-dentine junction and a secondary transposition of these novelties with no or minor modifications of dental functionalities by the enamel cap. Whereas enamel crenations have been reported by previous studies, our analysis do not support the presence of enamel tubercles without dentine relief nuclei. As is, the enamel cap is, at most, a secondary source of morphological novelty.  相似文献   

11.
The mature dentinoenamel junction (DEJ) is viewed by some investigators and the current authors, not as a fossilized, sharp transition between enamel and dentin, but as a relatively broad structural transition zone including the mantle dentin and the inner aprismatic enamel. In this study, the DEJ structure in bovine incisors was studied with synchrotron microComputed Tomography (microCT) using small cubes cut parallel to the tooth surface. The reconstructions revealed a zone of highly variable punctate contrast between bulk dentin and enamel; the mean linear attenuation coefficients and their standard deviations demonstrated that this zone averaged less mineral than dentin or enamel but had more highly variable structure than either. The region with the punctuate contrast is, therefore, the mantle dentin. The thickness of the mantle dentin seen in a typical data set was about 30 microm, and the mantle dentin-enamel interface deviated +/-15 microm from the average plane over a distance of 520 microm. In the highest resolution data ( approximately 1.5 microm isotropic voxels, volume elements), tubules in the dentin could be discerned in the vicinity of the DEJ. Contrast sensitivity was high enough to detect differences in mineral content between near-surface and near-DEJ volumes of the enamel. Reconstructions before and after two cubes were compressed to failure revealed cracks formed only in the enamel and did not propagate across the mantle dentin, regardless of whether loading was parallel to or perpendicular to the DEJ.  相似文献   

12.
Teeth have provided insights into many topics including primate diet, paleobiology, and evolution, due to the fact that they are largely composed of inorganic materials and may remain intact long after an animal is deceased. Previous studies have reported that the mechanical properties, chemistry, and microstructure of human enamel vary with location. This study uses nanoindentation to map out the mechanical properties of Alouatta palliata molar enamel on an axial cross‐section of an unworn permanent third molar, a worn permanent first molar, and a worn deciduous first molar. Variations were then correlated with changes in microstructure and chemistry using scanning electron microscopy and electron microprobe techniques. The hardness and Young's modulus varied with location throughout the cross‐sections from the occlusal surface to the dentin‐enamel junction (DEJ), from the buccal to lingual sides, and also from one tooth to another. These changes in mechanical properties correlated with changes in the organic content of the tooth, which was shown to increase from ~6% near the occlusal surface to ~20% just before the DEJ. Compared to human enamel, the Alouatta enamel showed similar microstructures, chemical constituents, and magnitudes of mechanical properties, but showed less variation in hardness and Young's modulus, despite the very different diet of this species. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Longitudinal and cross sections of teeth from 17 species of the Recent dolphins (Delphinoidea and Inioidea) were examined under scanning electron microscope to study the arrangement and ultrastructure of dental tissues with reference to phylogenetic and functional constraints. For most species, enamel had a simple bi-layered structure of radial enamel and an outer layer of prismless enamel. The outer prismless layer varied from 5 to 30 % of enamel thickness. The enamel of Burmeister’s porpoise (Phocoena spinipinnis) was entirely prismless. The prisms had an open sheath; tubules and tuft-like structures were common at the enamel-dentine junction. Cetacean dentine was characterized by irregularly distributed dentinal tubules in a relatively homogenous dentinal matrix. Radial enamel was observed in all Delphinoidea and in the franciscana (Pontoporia blainvillei), whereas the Amazon river dolphin (Inia geoffrensis) had prisms organized in Hunter–Schreger bands. HSB in enamel are regarded as a device for resisting propagation of cracks. These may occur due to increased functional demands, possibly related to the hardness of the species diet. Simplification in tooth shape and reduced biomechanical demands plausibly explain the primitive radial organization among delphinoids and Pontoporia. The HSB structure in the Amazon river dolphin, similar to those of extinct archaeocetes, seems to have secondary functional implications. However, the distribution of HSB in more-basal odontocetes is too poorly known to judge whether the HSB of Inia are a retained plesiomorphic feature or convergence.  相似文献   

14.
Summary Transmission electron microscopy of selected-area argon-ion-beam thinned kangaroo (Macropus giganteus) enamel revealed a complex ultrastructure in the region of the dentine-enamel junction (DEJ). Characteristic features were multiple branching of dentinal tubules, rejoining of enamel tubules, elongated defects, extended protrusions of dentine into enamel, two types (A and B) of hypomineralized enamel and a continuity between dentinal and enamel tubules. In the intertubular regions of the DEJ a complex intermingling of finer enamel and dentine crystals, similar to that found in human enamel, was observed. The varicosities observed in the light microscope were a combined optical effect caused by the hypomineralized (type A) enamel and the branching and rejoining of the enamel tubules.  相似文献   

15.
Zusammenfassung Hunter-Schreger-Bänder (HSB) sind eine auffällige Struktur im Schmelz von Säugetierzähnen, die als Bruchsicherung verstanden werden kann. Eine einfache Methode zur Beobachtung der Bänder wird beschrieben. Die hellen und dunklen Bänder werden durch die unterschiedliche Orientierung der Schmelzprismen hervorgerufen. Die häufige Aufgabelung der HSB sowie der regelmäßige Übergang der Schmelzprismen von einem Band zum nächsten, der mit einem Richtungswechsel der Prismen verbunden ist, wird beschrieben. Da dieser Richtungswechsel einer strengen Regel unterliegt, kann ein Strukturmodell entworfen werden, das sowohl den Lauf der Prismen wie die Vergabelung der HSB deutet. Eine frühere Strukturanalyse von Shellis und Poole (1979) zum Schmelz von Daubentonia kann nicht bestätigt werden.
Hunter-Schreger bands in the enamed of mammatian teeth arrangement, orientation of the prisms
Summary Hunter-Schreger bands (HSB) are a remarkable structure of the enamel in many mammalian teeth. This structure prevents cracks in the enamel. A simple method for observation of this structure is introduced. The light and dark bands are due to differences in the orientation of the enamel prisms. The frequent bifurcation of the HSB and the regular transition of prisms from one band to the next, which implies bending of the prisms, is described. Since this bending is strictly regulated, a structural model can be presented to explain both the course of the prisms and the mode of bifurcation of the HSB. An earlier structural interpretation of the enamel of Daubentonia is not confirmed.


Gefördert durch die Deutsche Forschungsgemeinschaft (Ko 627/7-1 und Pf 167/2-1)  相似文献   

16.
High energy X-ray scattering (80.7 keV photons) at station 1-ID of the Advanced Photon Source quantified internal strains as a function of applied stress in mature bovine tooth. These strains were mapped from dentin through the dentinoenamel junction (DEJ) into enamel as a function of applied compressive stress in two small parallelepiped specimens. One specimen was loaded perpendicular to the DEJ and the second parallel to the DEJ. Internal strains in enamel and dentin increased and, as expected from the relative values of the Young’s modulus, the observed strains were much higher in dentin than in enamel. Large strain gradients were observed across the DEJ, and the data suggest that the mantle dentin-DEJ-aprismatic enamel structure may shield the near-surface volume of the enamel from large strains. In the enamel, drops in internal strain for applied stresses above 40 MPa also suggest that this structure had cracked.  相似文献   

17.
The development of dentin and of enamel share a common starting locus: the dentinoenamel junction (DEJ). In this study the relationship between enamel and dentin crystals has been investigated in order to highlight the guiding or modulating role of the previously mineralized dentin layer during enamel formation. Observations were made with a high-resolution electron microscope and, after digitalization, image-analysis software was used to obtain digital diffractograms of individual crystals. In general no direct epitaxial growth of enamel crystals onto dentin crystals could be demonstrated. The absence of direct contact between the two kinds of crystals and the presence of amorphous areas within enamel particles at the junction with dentin crystals were always noted. Only in a few cases was the relationship between enamel and dentin crystals observed, which suggested a preorganization of the enamel matrix influenced by the dentin surface structure. This could be explained either by the existence of a proteinaceous continuum between enamel and dentin or by the orientation of enamel proteins by dentin crystals.  相似文献   

18.
19.
Dentin sialophosphpoprotein (Dspp) is transiently expressed in the early stage of secretory ameloblasts. The secretion of ameloblast-derived Dspp is short-lived, correlates to the establishment of the dentinoenamel junction (DEJ), and is consistent with Dspp having a role in producing the specialized first-formed harder enamel adjacent to the DEJ. Crack diffusion by branching and dissipation within this specialized first-formed enamel close to the DEJ prevents catastrophic interfacial damage and tooth failure. Once Dspp is secreted, it is subjected to proteolytic cleavage that results in two distinct proteins referred to as dentin sialoprotein (Dsp) and dentin phosphoprotein (Dpp). The purpose of this study was to investigate the biological and mechanical contribution of Dsp and Dpp to enamel formation. Transgenic mice were engineered to overexpress either Dsp or Dpp in their enamel organs. The mechanical properties (hardness and toughness) of the mature enamel of transgenic mice were compared with genetically matched and age-matched nontransgenic animals. Dsp and Dpp contributions to enamel formation greatly differed. The inclusion of Dsp in bulk enamel significantly and uniformly increased enamel hardness (20%), whereas the inclusion of Dpp weakened the bulk enamel. Thus, Dsp appears to make a unique contribution to the physical properties of the DEJ. Dsp transgenic animals have been engineered with superior enamel mechanical properties.  相似文献   

20.
大熊猫臼齿釉质的超微结构特征主要是施氏明暗带的宽度一般由8—15条釉柱组成;釉柱的横切面一般呈六角形或四角形,由里向外,釉柱的直径逐渐增大。在靠近釉牙本质界处,釉柱数量逐渐减少,有时甚至完全缺失,形成无釉柱结构的釉质。大熊猫臼齿釉质的氨基酸组成主要以甘氨酸,丙氨酸,谷氨酸,天冬氨酸和亮氨酸的含量为最高,而蛋氨酸,胱氨酸和酪氨酸的含量为最低。另外,还含有少量的羟脯氨酸。这种组成模式一般与人类和其它哺乳动物牙齿釉质的氨基酸组成相类似。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号