首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selective partitioning of cell membrane components during mouse spermatogenesis has been examined using a heterologous antibody raised against isolated type B spermatogonia. The anti-type B spermatogonia rabbit IgG (ATBS) binds to isolated populations of mouse primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene spermatocytes, leptotene/zygotene spermatocytes, pachytene spermatocytes, round spermatids, residual bodies, and mature spermatozoa. Although immunofluorescent labeling is uniformly distributed on the cell surface of early spermatogenic cells, a discrete topographical localization of IgG is observed on testicular, epididymal, and vas deferens spermatozoa. The convex surface of the acrosome, postacrosomal region, and tail are labeled. Antibody does not bind to a broad area corresponding to the concave region of the acrosome. The antibody also binds to mouse somatic cells including Sertoli cells, Leydig cells, thymocytes, and splenocytes, but not to mature spermatozoa of the vole, rat, hamster, guinea pig, rabbit, or human. ATBS, after absorption with mouse splenocytes or thymocytes, does not react with any somatic cells examined by fluorescence except with Sertoli cells. In addition, all reactivity with testicular, epididymal, and was deferens spermatozoa is abolished. However, spermatogenic cells at earlier stages of differentiation, including residual bodies, still react strongly with the absorbed antibody. The number of surface receptor sites per cell for absorbed ATBS ranges from approximately 3 million on primitive type A spermatogonia to 1 million on round spermatids and on residual bodies. Spermatozoa, however, have only 0.003 million binding sites for absorbed ATBS, in contrast to 10 million sites for the unabsorbed antibody. It appears that receptor sites for absorbed ATBS are not masked by components of epididymal secretions. These data imply, therefore, that specific mechanisms operate at the level of the cell membrane during spermiogenesis to insure that some surface components, not required in the mature spermatozoon, are removed selectively by partitioning to that portion of the spermatid membrane destined for the residual body.  相似文献   

2.
The bovine maturation-associated sperm membrane antigen CD52-like molecule has been analysed using a mouse anti-sperm monoclonal antibody developed against bull spermatozoa. The antigen recognised by monoclonal antibody IVA-543 was detected on blood mononuclear cells (including lymphocytes and monocytes) and on a minor population of polymorphonuclear leukocytes. The bovine CD52-like molecule is secreted by the epididymal epithelium and then it is inserted into the sperm membrane during the epididymal transport in the distal part of epididymis. The CD52-like molecule was absent from spermatozoa derived from testes, and the highest proportion of IVA-543-reactive sperm was observed in the cauda epididymis (91.6%).This study has shown that the new molecule identified on bovine cells has properties analogous to those previously described for CD52 molecules in man, mouse, rat, monkey, and dog.  相似文献   

3.
The potential use of antibodies that selectively recognize either X-bearing or Y-bearing sperm is self-evident. Thus our attention was directed to the fact that under optimal conditions, H-Y antibody lyses 50% of mouse spermatozoa. Accordingly, we asked whether expression of H-Y antigen is haploid in spermatozoa from XY male mice heterozygous for the autosomal dominantSxr gene, for if H-Y expression were haploid, H-Y antibody would be expected to kill 75% of spermatozoa derived from these XY,Sxr/- males. However, maximal lysis remained at the 50% level, which indicates that haploid expression of H-Y antigen and the potential immunoselection of Y-(or X-) bearing spermatozoa are unlikely.  相似文献   

4.
The plasma membrane of spermatozoa undergoes substantial remodeling during passage through the epididymal duct, principally because of changes in phospholipid composition, exchange of glycoproteins with epididymal fluid, and processing of existing membrane proteins. Here, we describe the interaction of an epididymal glycoprotein recognized by monoclonal antibody 2D6 with the plasma membrane of rat spermatozoa. Our goals have been to understand more about the mechanism of secretion of epididymal glycoproteins, how they interact with the sperm's plasma membrane, and their disposition within it. Reactivity to 2D6 monoclonal antibody was first detectable in principal cells in the distal caput epididymidis and as a soluble high-molecular-weight complex in the secreted fluid. It was not associated with membranous vesicles in the duct lumen. On cauda spermatozoa 2D6 monoclonal antibody recognized a 24-kDa glycoprotein (the subunit of a disulfide cross-linked homodimer of 48 kDa) that was present on the plasma membrane overlying the sperm tail. Binding of 2D6 to immature spermatozoa in vitro was cell-type specific but not species specific, and the antigen could only be extracted from cauda spermatozoa with detergents. Sequencing studies revealed that the 24-kDa glycoprotein was a member of the beta-defensin superfamily of small pore-forming glycopeptides of which several others (ESP13.2, Bin1b, E-2, EP2, HE2) are found in the epididymis. This evidence suggests that some epididymal glycoproteins are secreted into the luminal fluid in a soluble form and bind to specific regions of the sperm's surface via hydrophobic interactions. Given the antimicrobial function of beta-defensins, they have a putative role in protecting spermatozoa and the epididymis from bacterial infections.  相似文献   

5.
The ontogeny of a surface membrane antigen on rat spermatozoa has been investigated using the monoclonal antibody, 2D6. Using indirect immunofluorescence microscopy the 2D6 antigen was first detected on spermatozoa from the proximal corpus epididymidis; no reaction was present on testicular cells. The 2D6 antibody also bound to spermatozoa flushed from the uterus of mated rats and to a sperm-derived antigen on the surface of newly fertilized eggs. When frozen sections of epididymal tissues were stained with 2D6 monoclonal antibody immunofluorescence was confined to the epithelium lining the duct in the proximal and distal corpus epididymidis. Fluorescence in the tissue was androgen-dependent. Immunoblots of proteins in luminal secretions collected by micropuncture from different sites along the epididymal duct showed that in the proximal corpus epididymidis the 2D6 monoclonal antibody recognized a 32 kD antigen, but in secretions from the distal corpus and cauda epididymidis the monoclonal antibody also recognized antigens with molecular weights of 28, 23 and 20 kD. Immunoblots of proteins from spermatozoa collected from the corpus epididymidis revealed a reaction over a 32 kD antigen, while on spermatozoa from the cauda epididymidis the 2D6 monoclonal antibody recognized only a 23 kD antigen. Two hypotheses are proposed to account for the varied reactivity of the monoclonal antibody and their relative merits are discussed.  相似文献   

6.
A study was conducted to rapidly fractionate bovine spermatozoa on the basis of cell-surface H-Y antigen (i.e., Y chromosome-bearing spermatozoa). A novel, rapid immunomagnetic method was developed for removal of spermatozoa that bound to anti-H-Y IgG. Fluorescent labeling and flow cytometry were used to measure the efficiency with which spermatozoa binding to anti-H-Y were removed by the immunomagnetic technique. Washed bovine spermatozoa (n=7 bulls) were treated with a mouse monoclonal IgG antibody to H-Y antigen (MoAb 12/49). Fluorescent labeled goat antibody against mouse IgG was added to label those spermatozoa with cell-surface H-Y antigens. Supermagnetized polymer beads coated with an anti-antibody to the MoAb 12/49 were then added to the spermatozoa. After 20 min of incubation, spermatozoa were exposed for 2 min to a magnet, causing the magnetized particles to adhere to the sides of the tube. Nonmagnetized spermatozoa in the supernatent were aspirated and analyzed for fluorescent label by flow cytometry. Approximately 50% of spermatozoa not subjected to immunomagnetic separation were fluorescent labeled, and about one-half of the spermatozoa were observed microscopically to be bound to the magnetized polymer beads prior to magnetic separation (P<0.05). Following magnetic separation, only 1.2% (P<0.05) of the spermatozoa in the magnetic supernatent were fluorescent labeled. Assuming that only Y chromosome-bearing spermatozoa have cell-surface H-Y antigens, the present immunomagnetic fractionation removed almost all of the Y chromosome-bearing spermatozoa, leaving a population that was greater than 98% X chromosome-bearing spermatozoa.  相似文献   

7.
Summary In the absence of beta-2-microglobulin and MHC-determined cell surface antigens, cultured cells of the Burkitt lymphoma, Daudi, secrete testis-inducing H-Y antigen into the surrounding medium. We have precipitated Daudi-secreted H-Y antigen by two methods, one using mouse H-Y antibody and goat anti-mouse Ig, and the other using mouse H-Y antibody and Sepharose beads coated with protein A. The estimated molecular weight of the specific immunoprecipitate was 15,000–18,000 Daltons.  相似文献   

8.
The periacrosomal plasma membrane of spermatozoa is involved in sperm binding to oviductal epithelial cells and to the zona pellucida. A protein of 68–70 kD molecular mass was purified biochemically from the isolated periacrosomal plasma membrane of equine spermatozoa as a possible receptor for adhesion of spermatozoa to oviductal epithelial cells. A polyclonal antibody raised in rabbits against the purified equine sperm membrane protein recognized the 70 kD and an antigenically related 32 kD protein in preparations of isolated periacrosomal sperm plasma membrane and in detergent extracted ejaculated and epididymal spermatozoa. A larger protein (∼110 kD) was detected in equine testis. Two antigenically related proteins (64 and 45 kD) were recognized on the plasma membrane of cynomolgus macaque spermatozoa. In vitro sperm-binding assays were performed in the presence of antigen-binding fragments or IgG purified from the polyclonal antiserum to investigate a possible function of the isolated protein in binding of equine spermatozoa to homologous oviductal epithelial cells or zona pellucida. Incubation with antigen-binding fragments or IgG purified from the antiserum did not inhibit binding of equine spermatozoa either to oviductal epithelial cells or to the zona pellucida. On ultrastructural examination, the antibody bound exclusively to the cytoplasmic side of the periacrosomal plasma membrane of equine and macaque spermatozoa. Microsequence analysis of 13 residues of sequence showed strong homology with a number of angiotensin converting enzymes: An 84% identity was identified with testis specific and somatic forms of human and mouse angiotensin-converting enzyme. Immunocytochemistry and immunoblot analysis established that the protein is specific for the periacrosomal membrane of ejaculated, epididymal, and testicular stallion spermatozoa. Mol. Reprod. Dev. 48:251–260, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
A murine monoclonal antibody raised against hamster cauda epididymal spermatozoa was shown to recognize an Mr 34,000 component of epididymal epithelium. Antigen was localized by immunocytochemistry on the surface and in the apical cytoplasm of principal cells in the proximal corpus epididymidis but not in the caput or initial segment regions. Spermatozoa from the corpus epididymidis expressed antigen on their post-acrosomal plasma membrane and annulus. Epididymal principal cells from the proximal corpus region when cultured in vitro bound antibody on their apical surface for at least 5 days. Spermatozoa from the caput epididymidis co-cultured with epithelium expressed antigen after incubation for 8 and 24 h. These results suggest that a surface change to epididymal spermatozoa during maturation in vivo may also be elicited during in-vitro culture.  相似文献   

10.
鼠源性抗雄性特异性抗原噬菌体Fab抗体的制备及分析   总被引:1,自引:0,他引:1  
利用噬菌体抗体库筛选技术获得抗雄性特异性抗原的噬菌体Fab抗体,首次采用雄鼠脾细胞对鼠源性抗雄性特异性抗原噬菌体Fab抗体库进行3轮亲和富集和2轮雌鼠脾细胞吸附,对筛选后特异性噬菌体Fab抗体进行ELISA分析,重组率鉴定及基因测序分析。结果显示,5次筛选后的15个菌落中有9个能产生抗雄性特异性抗原特异性噬菌体抗体,噬菌体Fab抗体的基因重组率为60%,E5克隆的重链、轻链可变区序列分别属于VH1和VκⅣ基因家族,这为挑选出高亲和力的抗雄性特异性抗原噬菌体Fab抗体奠定了实验基础,将推进雄性特异性抗原及其抗体的研究进程,并为性别控制研究开创新途径。  相似文献   

11.
E74 is a mouse monoclonal antibody raised against the acrosome-reacted guinea pig spermatozoa. This study describes immunolocalization of the E74 antigen in guinea pig spermatozoa. Immunoelectron microscopy of guinea pig spermatozoa shows that the E74 antigen is localized on the equatorial segment plasma membrane following the acrosome reaction but not associated with the surface of the acrosome-intact spermatozoa. Immunoblot analysis of Triton X-100 extract of cauda epididymal guinea pig spermatozoa following one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis shows that E74 antibody recognizes a protein with an apparent molecular weight of 45,000 dalton. Immunoblot of sperm extracts separated by two dimensional gel electrophoresis indicates a broad spot of 45,000 dalton in the 5 to 7.5 isoelectric focusing range.  相似文献   

12.
We found an intra-acrosomal antigen of about 155,000 daltons (155 kDa) in a survey using the monoclonal antibody MC101 raised against mouse cauda epididymal spermatozoa. Morphological studies by means of indirect immunofluorescence and immunogold electron microscopy localized the antigen to the cortex region of the anterior acrosome. Avidin biotin complex immunocytochemistry initially demonstrated a faint signal at the anterior acrosome in the testis spermatozoa that increased in intensity as the sperm moved toward the distal epididymis. This incremental immunoreactivity was also confirmed by immunoblotting following one-dimensional SDS-PAGE. The 155 kDa protein band was immunostained, and it was much more intense in the cauda epididymal than in the caput and corpus epididymal spermatozoa. Only a trace or no immunostain was evident in the caput or testis spermatozoa. The antigen localization did not change during passage through the epididymis, being confined at the cortex region of the anterior acrosome. The epididymal epithelial cells were not immunostained. These findings suggested that the 155 kDa protein is biochemically modified, further implying that the biochemical alteration of intra-acrosomal material is involved in sperm maturation in the epididymis. © 1995 wiley-Liss, Inc.  相似文献   

13.
A monoclonal antibody (MAb) raised against human sperm protein, designated YWK-II, was used to determine the distribution of antigens in rat spermatozoa and rat testicular germ cells. By an indirect immunofluorescent method, the antibody localized over the rat spermatozoal head, except for the postacrosomal region. In paraffin sections of adult and immature rat testis, germ cells, at every developmental stage, and Sertoli cells stained, while interstitial cells and peritubular myoid cells remained unstained. When cocultures of Sertoli and germ cells were tested, only the germ cells stained intensely. Sertoli cells and peritubular myoid cells in cultures did not stain. In the epididymal sections, strong staining occurred with spermatozoa in the lumen and epididymal epithelial cells, with moderate staining in the myoid layers of epididymis. To determine the sperm antigen interacting with the YWK-II antibody, rat spermatozoa proteins were prepared and analyzed by an immunoblot technique. The monoclonal antibody interacted with a single protein, with an estimated molecular weight of 115,000, present in the cauda epididymal spermatozoa. Among the proteins of the caput epididymal spermatozoa, however, the antibody interacted with a major and a minor band with molecular weights of 115,000 and 88,000, respectively. On the other hand, with proteins prepared from the membrane fraction of adult and immature rat testis, the antibody reacted with two bands with estimated molecular weights of 88,000 and 115,000. In the lysate prepared from germ cells dissociated from Sertoli-germ cell cocultures, the antibody recognized only the 88,000 protein. The present results show that the YWK-II MAb interacts with two proteins with different molecular weights. The amount of the interacting proteins in spermatozoa varied with their location within the epididymis.  相似文献   

14.
U Müller  U Wolf  J W Siebers  E Günther 《Cell》1979,17(2):331-335
This report addresses the question whether two different types of binding exist for the reaction of H-Y antigen with the cell surface. Anti-H-Y antiserum in the presence of complement was cytotoxic only for gonadal cells expressing their own H-Y antigen, but not to ovarian cells loaded with H-Y antigen. H-Y antigen was co-redistributed with beta 2--microglobulin on newborn testicular cells, but some residual H-Y activity was found on similarly treated testis cells from 15 day old rats. After beta 2--microglobulin redistribution, testis cells maintained their binding capacity for exogenous H-Y antigen prepared from epididymal fluid or Daudi cell culture supernatants. This result suggests that exogenous H-Y antigen is bound via a gonad-specific receptor which is independent of beta 2--microglobulin and that this type of binding for H-Y antigen is different from the beta 2--m-associated expression of H-Y antigen on the cell surface.  相似文献   

15.
We have recently observed that a polyclonal antibody raised against a mouse epididymal luminal fluid protein (MEP 9) recognizes a 25-kDa antigen in mouse testis and epididymis [Rankin et al., Biol Reprod 1992; 46:747-766]. This antigen was localized by light and electron microscopic immunohistochemistry. The immunoreactivity in the testis was found in the residual cytoplasm of the elongated spermatids, in the residual bodies, and in the cytoplasmic droplets of spermatozoa. In the epididymis, the epithelial principal cells were stained from the distal caput to the distal cauda. Immunogold labeling in the principal cells showed diffuse distribution without preferential accumulation in either the endocytic or the secretory apparatus of the cells. In the epididymal lumen, the immunoreactivity was restricted to the sperm cytoplasmic droplets. No membrane-specific labeling was observed in luminal spermatozoa, cytoplasmic droplets, or isolated sperm plasma membranes. Three weeks after hemicastration or severance of the efferent ducts, a normal distribution of the immunoreactive sites was found in the epididymis. Immunoreactivity, was also detected in the epididymal epithelium of immature mice as well as in that of XXSxr male mice having no spermatozoa in the epididymis. These results suggest that the immunoreactivity seen in the principal cells originates from synthesis rather than endocytosis of the testicular protein from disrupted cytoplasmic droplets. Furthermore, these results suggest that the 25-kDa protein is synthesized independently by both testis and epididymis.  相似文献   

16.
To determine the importance during fertilization of various plasma membrane components of the hamster spermatozoon, monoclonal antibodies were generated in the mouse against specific sperm surface antigens. BALB/C mice were immunized with washed hamster spermatozoa from the cauda epididymidis and immune splenocytes fused with myeloma cells (P3 X 63 Ag8). The sperm-specific immunoglobulins were detected in hybridoma cultures by a solid-phase assay (ELISA). Five monoclonal antibodies bound specifically to the surface of intact hamster spermatozoa, three immunoglobulins to restricted regions of the head and tail plasmalemma as detected by immunofluorescence. In two cases, the affinity of the membrane antigen was modified during passage through the epididymis. Monoclonal antibodies to the sperm head or to the head and tail inhibited fertilization in vitro by blocking sperm attachment to the zona pellucida and the oolemma.  相似文献   

17.
A monoclonal antibody generated against hamster epididymal spermatozoa and recognizing an antigen within the acrosome was used in conjunction with FITC-antimouse immunoglobulin as a marker of the human acrosome during sperm development, capacitation, and the acrosome reaction. The specificity of binding of the monoclonal antibody was assessed using immunolocalization by epi-fluorescence and electron microscopy. Immunofluorescence revealed that antibody bound over the entire anterior acrosome in hamster and human spermatozoa. Ultrastructural localization indicated that antigen was predominantly present on the inner face of the outer acrosomal membrane and within the acrosomal content. Qualitative specificity was studied using a highly purified preparation of hamster acrosomes in an enzyme-linked immunosorbent assay. Since the antibody rapidly visualized human acrosomes, it was used to detect abnormal acrosome morphology of mature spermatozoa and to mark spermatids present in the ejaculate. During incubation in capacitating medium, changes in the immunofluorescence of live or methanol fixed spermatozoa were correlated with incubation interval and the ability of spermatozoa to fuse with zona-free hamster oocytes. Spermatozoa bound to zona-free hamster oocytes displayed no fluorescence, confirming that acrosome loss occurred before spermatozoa attached to the vitellus.  相似文献   

18.
The localization of an acrosomal protein was studied using a monoclonal antibody MN7 raised against mouse spermatozoa. MN7 specifically recognized the anterior acrosome of several mammalian (mouse, rat, hamster) spermatozoa fixed with paraformaldehyde. An immunoblot study with periodate treatment showed that MN7 recognized a carbohydrate region of a 90 kDa protein in an extract of mouse and rat cauda epididymal spermatozoa. The change in distribution of the MN7 antigen during acrosome development was investigated in the rat testis using the pre-embedding immunoperoxidase technique. The antigen first appeared in the proacrosomic granules of spermatids in steps 1–2. Small vesicles adjacent to the outer acrosomal membrane and the developing acrosomic system were immunoreactive during steps 4–7. The majority of the antigen was then redistributed to the head-cap portion during steps 8–18, and finally restricted to the anterior acrosome in the step 19-spermatid. These results suggest that the antigen is transported to the acrosome by way of the vesicles that originate from the Golgi apparatus during early spermiogenesis, and are then delivered to the final destination within the acrosome by the intra-acrosomal migration during late spermiogenesis.  相似文献   

19.
20.
During investigation of the frequency of recombination of the testis determining gene, Tdy, and the minor histocompatibility antigen gene Hya on the Sxr segment in an outbred mouse stock, we identified two fertile males, one XY and the other XYSxr, which typed H-2k positive using the H-2b anti-H-2k monoclonal antibody HB50, but whose cells failed either to stimulate H-Y specific H-2k restricted T-cell clones, or to be killed by anti-H-2k or anti-H-2k restricted H-Y specific cytotoxic T cells. We investigated these two mice and their existing relatives, using H-2 and H-Y typing methods. The progeny of their test matings with H-2b homozygous C57BL/6 females were also investigated. The results indicate that the transmission of the Hya gene on the Y chromosomes from both mice, and the additional Hya gene on the Sxr segment of the carrier male, allowed for the expression of the H-Y antigen and its detection in the presence of an H-2 haplotype for which we had H-2 restricted H-Y specific typing cells (H-2b and H-2k). Furthermore, we identified the haplotype of the two original males as expressed in the H-2 homozygous and heterozygous F2 progeny as H-2q and discovered an unexpected cross reactivity of the monoclonal anti KkDk antibody HB13 with half the cells of H-2q homozygotes, but not qb heterozygotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号