首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Drugs such as cocaine, procaine, pheniprazine (Catron) and veratridine, which have actions on sympathetic nerves and nerve terminals, were examined for their ability to increase serotonin N-acetyltransferase (EC 2.3.1.5; NAT) in pineal organ culture. The absence of potassium (0 KCl) was also examined. NAT is known to respond to β-adrenergic stimulation. It was found that these drugs and 0 KCl increased the enzyme activity 100 to 2000-fold in innervated pineals but had virtually no effect in denervated pineals. The effects on innervated pineals were blocked by the β-blocker propranolol but not by the α-blocker, phentolamine. These drugs and 0 KCl inhibited to varying degrees [3H] 1-norepinephrine uptake in pineals. It is concluded that these agents activated the β-adrenergic receptor on pineal cells by causing an accumulation of extraneuronal norepinephrine. The accumulation of norepinephrine is due, at least in part, to the blockade of norepinephrine reuptake by nerve terminals. The ability of veratridine to stimulate NAT and to inhibit norepinephrine uptake was reversed by tetrodotoxin, a blocker of sodium permeability in excitable tissue, thus veratridine acts by increasing sodium permeability in nerve terminals. This adds support to the theory that catecholamine uptake is a process that requires a sodium gradient across the nerve terminal membrane.  相似文献   

2.
The release of newly synthesized [3H]adenosine has been studied in vivo in cat caudate nucleus and substantia nigra, using a push pull cannula. In the presence of [3H]adenosine as precursor, spontaneously released [3H]adenosine was easily detectable in superfusates of the push pull cannula. In the caudate nucleus, potassium and veratridine caused a marked and reversible increase in [3H]adenosine release. The effect of veratridine was completely blocked by tetrodotoxin (TTX) although TTX had no action by itself. Ouabain as well as glutamate, also markedly increased the release of [3H]adenosine.The specific 5′ nucleotidase inhibitor α,β-methylene ADP, did not alter the increase in the amount of [3H]adenosine obtained by veratridine, although it diminished the spontaneous release of [3H]adenosine by about 20%.Push pull cannulae were also implanted simultaneously into the caudate nucleus and substantia nigra. Potassium applied into the caudate nucleus increased the local release of adenosine but did not change that observed in the substantia nigra. When potassium was applied into the substantia nigra, it also increased the local release of adenosine but did not change that observed in the caudate nucleus.The results are discussed in term of the possible existence of “purinergic neurons” and of the relation between the adenosine release and central nervous activity.  相似文献   

3.
The effects of veratridine, an agent known to increase Na permeability in excitable tissues, were determined on a dispersed cell preparation from the rat parotid gland. The uptake of 22Na by these parotid cells was increased in the presence of veratridine but not to as great an extent as with carbachol. The veratridine effect was blocked by both tetrodotoxin (TTX) and a combination of receptor blockers, atropine and phentolamine. TTX had no effect on the increase in 22Na uptake due to carbachol. Electron microscopic examination revealed the presence of nerve terminals in the dispersed cell preparation, often in very close apposition to individual cells. It is likely that these nerve terminals are the primary sites of actions of veratridine and TTX and not the parotid acinar cells. The possibility of the presence of unmyelinated nerve fibers should be taken into account in the analyses of experimental data obtained with dispersed cell preparations.  相似文献   

4.
Abstract

The actions of insecticides on the insect γ-aminobutyric acid (GABA) receptor were investigated using [35S]t-butylbicyclophosphorothionate ([35S]TBPS) binding and voltage-clamp techniques. Specific binding of [35S]TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 ± 2.9 nM and a Bmax value of 1770 ± 40 fmol/mg protein. [35S]TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of [35S]TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on [35S]TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current.  相似文献   

5.
The saturable and specific high-affinity uptake of [3H]serotonin ([3H]5HT) (5 × 10?8 M) was studied in slices from the hippocampus, parietal cortex, septum-preoptic area, and hypothalamus of male 2, 6, 12 and 24–32 month old C57BL/6N mice. Hippocampal [3H]5-HT uptake showed a significant biphasic relationship to age, with lower values in the 2 and 24–32 month old mice compared to 6 month old mice. No significant age effects were seen in the other regions, or in [3H]norepinephrine high-affinity uptake in the hippocampus.Studies of the high-affinity uptake mechanism in synaptosomal preparations were made in a subgroup of 12 and 24 month old mice. A micro-assay using a tissue-harvester measured high-affinity uptake on 8–30 μl of the P2 suspension (crude-synaptosomal preparation). The high-affinity uptake was linear for 4 min at 37°C and inhibited in both the adult and aged tissue by 10?5 M cold 5-HT (83 and 78% respectively), 10?5 M fluoxetine (85 and 82% respectively) and 10?3 M NaCN (57 and 57% respectively). Kinetic analysis of the [3H]5HT high-affinity uptake in the hippocampus (3 min, 37°C) revealed the same apparent Km for serotonin at both ages (6.7 x 10?8 M), but a 44% decrease in Vmax in the aged hippocampal synaptosomal high-affinity uptake compared to adults (120 vs 215 pmol of 5-HT/g-tissue/3 min).These results are discussed in relationship to the reported age effects on the intrinsic neurons of the hippocampus.  相似文献   

6.
The efflux of [3H]noradrenaline (NA) and of the non transmitter, non metabolizable, amino acid [14C]α-aminoisobutyrate (AIB), was followed simultaneously from superfused rat brain cortex thin slices, that had been preloaded with those substances. Short (2 min) “pulses” of increasing veratridine concentrations were applied at 10 min intervals. When calcium in the superfusion fluid was 1 mM, [3H]NA efflux increased progressively with pulses of 1, 3, 10 and 30 μM veratridine, but further increase to 100 μM resulted in a decrease of the induced 3H-efflux. Veratridine-enhanced [3H]NA efflux decreased considerably in 0.1 mM calcium and was virtually suppressed when no calcium was added to the superfusion fluid. In 1 mM calcium, the efflux of [14C] AIB was increased progressively by pulses of 10, 30 and 100 μM veratridine, but no increase in efflux was seen with 1 or 3 μM drug. In 0.1 mM, or without added calcium, the induced efflux of [14C]AIB was markedly increased. Similar findings were seen when a long (10 min) pulse of 10 μM veratridine was given. After such long pulses there was a rapid return of AIB efflux to pre-veratridine levels if calcium was 1 mM, but in the absence of added calcium, the return to baseline levels of both [3H]NA and, especially, that of [14C]AIB efflux, was greatly impaired. The veratridine enhanced efflux of both NA and AIB was entirely blocked by 1 μM tetrodotoxin.  相似文献   

7.
The characteristics of [3H]GABA transport were investigated in preparations greatly enriched in different classes of cerebellar cells. In contrast to observations in situ, isolated Purkinje cells readily accumulated [3H]GABA. In comparison with astrocytes, theV max of the high-affinity uptake process was sixfold higher (0.31 vs. 0.05 nmol/min/106 cells) and the apparentK t twofold greater (2 vs. 1 M). In contrast to these cell types, uptake was very low in granule cell-enriched preparations.cis-1,3-Aminocyclohexane carboxylic acid was a potent inhibitor of [3H]GABA uptake by the Purkinje cells and a weak blocker in astrocytes, while the converse was the case for -alanine. Diaminobutyric acid strongly inhibited uptake in both cell types. [3H]GABA transport was Na+ dependent in both cell classes. However, veratridine and ouabain selectively blocked [3H]GABA accumulation in the Purkinje cells, which were also more sensitive than the astrocytes to the glycolysis inhibitor, NaF. The results indicated, therefore, marked differences between Purkinje cells and astrocytes in the properties of both the [3H]GABA transport systems and the underlying metabolic processes.  相似文献   

8.
Using a sensitive perfusion system we have studied the nicotine-induced release of [3H]dopamine ([( 3H]DA) from striatal synaptosomes. Nicotine-evoked release was concentration dependent with an EC50 of 3.8 microM. The response to 1 microM nicotine was comparable to that to 16 mM K+; 10 microM veratridine evoked a larger response. All three stimuli were Ca2+ dependent but only the response to veratridine was blocked by tetrodotoxin. Repetitive stimulations by 1 microM (-)-nicotine (100 microliters) at 30-min intervals resulted in similar levels of [3H]DA release; higher concentrations of (-)-nicotine resulted in an attenuation of the response particularly following the third stimulation. This may reflect desensitisation or tachyphylaxis of the presynaptic nicotinic receptor. The action of nicotine was markedly stereoselective: a 100-fold higher concentration of (+)-nicotine was necessary to evoke the same level of response as 1 microM (-)-nicotine. It is proposed that these presynaptic nicotinic receptors on striatal terminals are equivalent to high-affinity nicotine binding sites described in mammalian brain.  相似文献   

9.
A lipoidal-protein complex has been isolated from rat gastrocnemius tissue which exhibits a highly specific binding capacity for [3H]veratridine. Purification of the complex has been accomplished by a number of chromatographic steps including affinity chromatography in organic solvents utilizing a resin synthesized by oxirane coupling of veratridine to Sephadex LH-20. The purified complex binds veratridine but not tetrodotoxin or a number of cholinergic ligands. Veratridine binding to the complex is inhibited by aconitine but not tetrodotoxin or cholinergic ligands. The complex has both veratridine saturable (KD= 13 μm ) and non-saturable (KD1 Mm ) binding components. Preliminary chemical analysis showed that the complex is a proteoglycolipid with a protein: carbohydrate: phosphorous ratio of 1.5:1.1:1.0. A discussion is presented favoring the identity of the isolated proteoglycoiipid as a portion of the macromolecular complex comprising the axonal sodium action potential ionophore.  相似文献   

10.
The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of [3H]dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal3H overflow and reduced K+-induced release of [3H]DA from nucleus accumbens slices. The effect of serotonin on basal3H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of [3H]DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of [3H]DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.  相似文献   

11.
Abstract: The effects of γ-aminobutyric acid (GABA) on the spontaneous release of endogenous glutamic acid (Glu) or aspartic acid (Asp) and the effects of Glu on the release of endogenous GABA or [3H]GABA were studied in superfused rat cerebral cortex synaptosomes. GABA increased the outflow of Glu (EC5017.2 μM) and Asp (EC50 18.4 μM). GABA was not antagonized by bicuculline or picrotoxin. Neither muscimol nor (-)-baclofen mimicked GABA. The effects of GABA were prevented by GABA uptake inhibitors and were Na+ dependent. Glu enhanced the release of [3H]GABA (EC50 11.5 μM) from cortical synaptosomes. Glu was not mimicked by the glutamate receptor agonists N-methyl-d -aspartic, kainic, or quisqualic acid. The Glu effect was decreased by the Glu uptake inhibitor D-threo-hydroxyaspartic acid (THA) and it was Na+ sensitive. Similarly to Glu, D-Asp increased [3H]GABA release (EC50 9.9 μM), an effect blocked by THA. Glu also increased the release of endogenous GABA from cortex synaptosomes. In this case the effect was in part blocked by the (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist 6-cyano-7-nitroquinoxaiine-2, 3-dione, whereas the 6-cyano-7-nitroquinoxaline- 2, 3-dione-insensitive portion of the effect was prevented by THA. GABA increased the [3H]D-Asp outflow (EC50 13.7 μM) from hippocampal synaptosomes in a muscimol-, (-)- baclofen-, bicuculline-, and picrotoxin-insensitive manner. The GABA effect was abolished by blocking GABA uptake and was Na+ dependent. Glu increased the release of [3H]- GABA from hippocampal synaptosomes (EC50 7.1 μM) in an N-methyl-d -aspartic acid-, kainic acid-, or quisqualic acid-insensitive way. The effect of Glu was prevented by THA and was Na+ dependent. As in the cortex, the effect of Glu was mimicked by D-Asp in a THA-sensitive manner. It is proposed that high-affinity GABA or Glu heterocarriers are sited respectively on glutamatergic or GA- BAergic nerve terminals in rat cerebral cortex and hippocampus. The uptake of GABA may modulate Glu and Asp release, whereas the uptake of Glu may modulate the release of GABA. The existence of these heterocarriers is in keeping with the reported colocalization of GABA and Glu in some cortical and hippocampal neurons. Preliminary data suggest that these mechanisms may also be present in rat cerebellum and spinal cord.  相似文献   

12.
The role of the serotonin uptake carrier in the methamphetamine-induced depression of serotonin synthesis was examined. In vivo, coadministration of citalopram or chlorimipramine with methamphetamine blocked the irreversible depression of tryptophan hydroxylase activity observed in the neostriatum and cerebral cortex after repeated administration of high doses of methamphetamine. The methamphetamine-induced reduction of neostriatal serotonin and 5-hydroxyindoleacetic acid was also attenuated by the two uptake inhibitors. In contrast, neither drug antagonized the depression of neostriatal tyrosine hydroxylase activity observed after methamphetamine administration. Citalopram also blocked the reversible inhibition of tryptophan hydroxylase activity observed after the acute administration of methamphetamine. In vitro, citalopram significantly inhibited methamphetamine-induced [3H] serotonin release from neostriatal slices. The results demonstrate that inhibitors of the serotonin uptake carrier can antagonize both the in vivo and in vitro effects of methamphetamine on serotonergic neurons. Furthermore, the methamphetamine-induced depression of serotonin synthesis is dependent upon a functional serotonin uptake system.  相似文献   

13.
Summary Sodium, potassium and veratridine were tested for their effects on the uptake of gamma-aminobutyric acid (GABA) by pinched-off presynaptic nerve terminals (synaptosomes). As noted by previous investigators, the uptake from media containing 1 m GABA (high-affinity uptake) is markedly Na-dependent; the uptake averaged 65 pmoles/mg synaptosome protein × min, with [Na]0=145mm and [K]0=5mm, and declined by about 90% when the external Na concentration ([Na]0) was reduced to 13mm (Na replaced by Li). The relationship between [Na]0 and GABA uptake was sigmoid, suggesting that two or more Na+ ions may be required to activate the uptake of one GABA molecule. Thermodynamic considerations indicate that with a Na+/GABA stoichiometry of 21, the Na electrochemical gradient, alone, could provide sufficient energy to maintain a maximum steady-state GABA gradient ([GABA] i /[GABA]0) of about 104 across the plasma membrane of GABA-nergic terminals.In Ca-free media with constant [Na]0, GABA uptake was inhibited, without delay, by increasing [K]0 or by introducing 75 m veratridine; the effect of veratridine was blocked by 200nm tetrodotoxin. The rapid onset (within 10 sec) of the veratridine and elevated-K effects implies that alterations in intra-terminal ion concentrations are not responsible for the inhibition. The uptake of GABA was inversely proportional to log [K]0. These observations are consistent with the idea that the inhibitory effects of both veratridine and elevated [K]0 may be a consequence of their depolarizing action. The data are discussed in terms of a barrier model (Hall, J. E., Mead, C.A., Szabo, G. 1973.J. Membrane Biol. 11:75) which relates carrier-mediated ionic flux to membrane potential.  相似文献   

14.
The spontaneous and veratridine-evoked release of radioactive d-aspartic acid, previously taken up by rat substantia nigra slices, was studied by using a superfusion system. Veratridine (25 μM, 1 min) markedly produced a 14-fold increase in d-[3H]aspartic acid release from nigral slices. Omission of Ca2+ and increasing Mg2+ concentration to 12 mM in the superfusion medium did substantially block d-[3H]aspartate release induced by veratridine depolarization. Nevertheless, veratridine was able to evoke [3H]amino acid release which seemed to be, at least, 30% Ca2+-independent. Additional experiments showed that tetrodotoxin (0.01–0.1 μM), a blocker of voltage-dependent Na+ channels, totally abolished veratridine-evoked release of d-[3H]aspartate from nigral slices.Lesion studies were performed in order to learn about the nature of the neuronal compartment in the substantia nigra upon which veratridine-depolarization acted to induce d-[3H]aspartate release. Unilateral ablation of the fronto-parietal cortex was accompanied by a significant decrease in the accumulation of nigral d-[3H]aspartate and by a large loss from ipsilateral nigral slices in d-[3H]aspartate release evoked by veratridine. In contrast, both the accumulation and veratridine-evoked release of [3H]dopamine, remained unchanged in the ipsilateral substantia nigra slices to the lesion.The findings reported suggest that d-[3H]aspartic acid may be taken up and then released, in a Ca2+-dependent manner, by nerve terminals located in the substantia nigra. In addition, the results shown provide support to the view that l-glutamate and/or l-aspartate may act as neurotransmitters at the cortico-nigral neuronal pathway.  相似文献   

15.
The effect(s) of a new imipramine analogue, 2-nitroimipramine, on high affinity [3H] imipramine binding and [3H] serotonin uptake in human platelets were studied. 2-Nitroimipramine was found not only to be a very potent inhibitor of [3H] imipramine binding and [3H] serotonin uptake but was found to irreversibly inhibit binding and uptake simultaneously. This finding supports previous observations from our laboratory and others that high affinity imipramine binding labels serotonin uptake or transport sites. 2-Nitroimipramine should prove an important tool for subsequent studies of the molecular mechanism(s) involved in the transport of serotonin and the binding of imipramine to platelet and brain membranes.  相似文献   

16.
1. Amitraz stimulated [3H]batrachotoxin in A 20-α-benzoate ([3H]BTX-B) binding to neural membranes from pyrethroid susceptible (S) and resistant (R) tobacco budworm moths, but N′-(2,4-xylyl)-N-methylformamidine (SN 49844) stimulated binding only with S moths.2. Chlordimeform stimulated [3H]BTX-B binding only with R moths, and N-(4-chloro-o-tolyl)-N-methylformamidine (demethylchlordimeform) yielded no significant stimulation with either strain.3. A mixture of amitraz and deltamethrin, a pyrethroid that previously had been shown to enhance [3H]BTX-B binding with tobacco budworm moths, also gave significant stimulation of radioligand binding with S moths.4. When membranes were prepared from S moths at various intervals following topical application of amitraz, deltamethrin, or a mixture of amitraz and deltamethrin, biphasic stimulation of [3H]BTX-B binding was observed, with maximum enhancement occurring at 2 and 6 hr.5. These results provided a basis for suggesting that a formamidine binding site is located on or closely associated with the sodium channel protein.6. Whether this site is the same as the pyrethroid/DDT binding domain remains to be demonstrated; however, similarities in responses elicited by amitraz and deltamethrin alone and in combination indicate that some relationship may exist.  相似文献   

17.
The ability of gamma-aminobutyric acid (GABA) and glycine (Gly) to modulate each other's release was studied in synaptosomes from rat spinal cord, cerebellum, cerebral cortex, or hippocampus, prelabeled with [3H]GABA or [3H]Gly and exposed in superfusion to Gly or to GABA, respectively. GABA increased the spontaneous outflow of [3H]Gly (EC50, 20.8 microM) from spinal cord synaptosomes. Neither muscimol nor (-)-baclofen, up to 300 microM, mimicked the effect of GABA, which was not antagonized by either bicuculline or picrotoxin. However, the effect of GABA was counteracted by the GABA uptake inhibitors nipecotic acid and N-(4,4-diphenyl-3-butenyl)nipecotic acid. Moreover, the GABA-induced [3H]Gly release was Na+ dependent and disappeared when the medium contained 23 mM Na+. The effect of GABA was Ca2+ independent and tetrodotoxin insensitive. Conversely, Gly enhanced the outflow of [3H]GABA from rat spinal cord synaptosomes (EC50, 100.9 microM). This effect was insensitive to both strychnine and 7-chlorokynurenic acid, antagonists at Gly receptors, but it was strongly Na+ dependent. Also, the Gly-evoked [3H]GABA release was Ca2+ independent and tetrodotoxin insensitive. GABA increased the outflow of [3H]Gly (EC50, 11.1 microM) from cerebellar synaptosomes; the effect was not mimicked by either muscimol or (-)-baclofen nor was it prevented by bicuculline or picrotoxin. The GABA effect was, however, blocked by GABA uptake inhibitors and was Na+ dependent. Gly increased [3H]GABA release from cerebellar synaptosomes (EC50, 110.7 microM) in a strychnine- and 7-chlorokynurenic acid-insensitive manner. This effect was Na+ dependent. The effects of GABA on [3H]Gly release seen in spinal cord and cerebellum could be reproduced also with cerebrocortical synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Previously it has been shown that radiolabelled histamine is taken up by brain slices and may subsequently be released by depolarizing stimuli in a calcium-dependent manner, indicating the involvement of neurons in uptake and release of histamine.The present study demonstrates that after incubation of brain slices with low (nM) concentrations of [3H]histamine the amine may be taken up by (and released from) dopaminergic and serotonergic neurons (nerve terminals). Thus 6-hydroxydopamine- and 5,7-dihydroxytryptamine-induced lesions not only reduced the uptake of [3H]dopamine (in striatal slices) and [3H]serotonin (in hippocampal slices), but also, though to a lesser extent, that of [3H]histamine. Immunocytochemical findings revealed that the neurotoxins did not visibly affect histaminergic neurons. Lesioning of noradrenergic neurons appeared not to alter significantly the uptake of [3H]histamine. Further, various drugs acting on either catecholamine-, serotonin- or opioid-receptors and known to cause presynaptic inhibition of the release of [3H]dopamine or [3H]wrotonin from striatal or hippocampal slices also inhibited [3H]histamine release.It is concluded that incubation of brain slices with low concentrations of [3H]histamine does not result in a selective labelling of histaminergic neurons. The possibility that, unlike other monoamines, histamine is not subject to high-affinity uptake by the nerve terminals from which it was released, is discussed.  相似文献   

19.
The action of γ-aminobutyric acid (GABA) and related compounds on the spontaneous release of newly synthesized [3H]5-hydroxytryptamine ([3H]5-HT) was studied in the suprachiasmatic area (SCA) using a superfusion system. GABA (10 μM) increased [3H]5-HT release from SCA by up to 190%. Bicuculline or picrotoxin (10 μM) failed to inhibit the stimulatory effect of GABA. Muscimol (10 μM), a GABAA agonist, was ineffective, however β-p-chlorophenyl GABA, R(−)baclofen, enhanced over 200% the release of the indoleamine; this latter effect was stereospecific. RS baclofen was twice less potent than the R(−)isomer in increasing the [3H]5-HT release. S(+)baclofen failed to affect the release of the indoleamine, whereas it attenuated the effect of its enantiomer. The effect of R(−)baclofen was Ca2+ dependent and was abolished by tetrodotoxin (TTX).Taken together these results suggest that in the SCA, [3H]5-HT release is facilitated by the stimulation of GABAB receptors. The possible localization of these receptors is discussed in the light of morphological data recently reported by Bosler et al. (1985) and results obtained after TTX application.  相似文献   

20.
In this study we show that the glutamate ionotropic agonist kainate (KA) stimulates the efflux of preloadedd-[3H]aspartate (D-[3H]Asp) and inhibits the uptake of this amino acid in cerebellar slices. The effect of this agonist on the efflux of D-[3H]Asp is sensitive to(i) 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2-3-dione (NBQX), indicating the involvement of KA/(RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and is(ii) partially tetrodotoxin (TTX)-sensitive, indicating that pre-(TTX-insensitive) and post-synaptic (TTX-sensitive) KA/AMPA receptors are involved. In contrast, the effect on uptake is NBQX- and TTX-insensitive indicating a direct interaction with glutamate transporters. AMPA inhibited D-[3H]Asp uptake and had no effect on D-[3H]Asp efflux. In the same system, the uptake but not the efflux of D-[3H]Asp was affected by dihydrokainate (DHK). The DHK-induced uptake inhibition occurred in the presence of TTX. NBQX inhibited DHK-induced effect at 5 mM but not at 1 mM DHK concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号