首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The prothoracicotropic hormone (PTTH) is a principal neuropeptide regulator of insect postembryonic molting and metamorphosis. In the tobacco hornworm, Manduca sexta, PTTH is produced by two neurosecretory cells (NSC) located in each protocerebral lobe of the brain. The development of these neurons, the L-NSC III, has been investigated immunocytologically to establish the time course of their morphological differentiation. PTTH may be one of the earliest neuropeptides expressed in insect embryos. PTTH-immunoreactivity was initially detected in the somata at 24 to 30% of embryonic development. Neurites sprouted shortly thereafter and began to grow medially through the brain anlage. By 42% embryonic development, the neurites had decussated to the contralateral brain lobe. As development progressed, the L-NSC III neurites grew along specific tracts through the contralateral brain lobe reaching the ventrolateral regions of the brain by approximately 60% development. The axons exited the brain through a retrocerebral nerve, the nervi corporis cardiaci I + II. At approximately 63% development, the axons innervated the corpus allatum and began branching to form neurohemal terminals for PTTH release. At 60% development, short collaterals began extending in the protocerebral neuropil. During the remainder of embryogenesis, both the dendritic collaterals and the terminal neurohemal varicosities continued to elongate and arborize. By 85% embryonic development, the basic architecture of the L-NSC III was established.  相似文献   

2.
The prothoracicotropic hormone (PTTH) is a principal neuropeptide regulator of insect postembryonic molting and metamorphosis. In the tobacco hornworm, Manduca sexta, PTTH is produced by two neurosecretory cells (NSC) located in each protocerebral lobe of the brain. The development of these neurons, the L-NSC III, has been investigated immunocytologically to establish the time course of their morphological differentiation. PTTH may be one of the earliest neuropeptides expressed in insect embryos. PTTH-immunoreactivity was initially detected in the somata at 24 to 30% of embryonic development. Neurites sprouted shortly thereafter and began to grow medially through the brain anlage. By 42% embryonic development, the neurites had decussated to the contralateral brain lobe. As development progressed, the L-NSC III neurites grew along specific tracts through the contralateral brain lobe reaching the ventrolateral regions of the brain by approximately 60% development. The axons exited the brain through a retrocerebral nerve, the nervi corporis cardiaci I + II. At approximately 63% development, the axons innervated the corpus allatum and began branching to form neurohemal terminals for PTTH release. At 60% development, short collaterals began extending in the protocerebral neuropil. During the remainder of embryogenesis, both the dendritic collaterals and the terminal neurohemal varicosities continued to elongate and arborize. By 85% embryonic development, the basic architecture of the L-NSC III was established.  相似文献   

3.
The prothoracicotropic hormone (PTTH), which stimulates ecdysteroid synthesis in the prothoracic glands, is produced, in the dorso-lateral protocerebrum of Manduca sexta, by paired peptidergic neurons, the lateral neurosecretory cell group III (L-NSC III). Our study revealed ultrastructural features of L-NSC III, identified by immunogold labeling, and compared developing and diapause states. In developing and early-diapause pupae, L-NSC III soma ultrastructure is similar and is characterized by numerous clusters of neurosecretory granules (NSG) and an extensive trophospongium formed by satellite-glial cells. However, as diapause progresses, the ultrastructure changes, with the NSG becoming concentrated into large clusters separated by highly organized rough endoplasmic reticulum. Most conspicuous is a substantial reduction in the number of Golgi complexes and the glial trophospongium, and the presence of stacked plasma membrane separating the glia and neuron somata. The deep-diapause soma also has abundant glycogen deposits and autophagic vacuoles. With diapause termination, this morphology reverts to the nondiapause ultrastructure within three days, i.e. just before PTTH release that evokes development to the adult. During PTTH release the abundance of NSG in the soma does not change, suggesting that NSG depletion in the perikarya is not a marker for neurosecretion by the L-NSC III.  相似文献   

4.
The organization of identified neurosecretory cell groups in the larval brain of the tobacco hornworm, Manduca sexta, was investigated immunocytologically. Computer-assisted three-dimensional reconstruction was used to examine the architecture of the neurosecretory cell groups. The group III lateral neurosecretory cells (L-NSC-III) which produce the prothoracicotropic hormone are located dorsolaterally in the protocerebrum and extend axons medially that decussate to the contralateral lobe prior to exiting the brain through the nervi corporis cardiaci I + II. The group IIa2 medial neurosecretory cells (M-NSC IIa2) are located anteriorly in the medial dorsal protocerebrum. The axons of these cells also exit the brain via the contralateral nervi corporis cardiaci I + II. However, their axons traverse a different pathway through the brain from that of the L-NSC III axons. Each of the cell groups possesses elaborate dendrites with terminal varicosities. The dendrites can be classified into specific fields based upon their location and projection pattern within the brain. The dendrites for these two neurosecretory cell groups overlap in specific regions of the protocerebral neuropil. After the axons of these neurosecretory cells exit the brain through the retrocerebral nerve, they innervate the corpus allatum where they arborize to form neurohemal terminals in strikingly different patterns. The L-NSC III penetrate throughout the glandular structure and the M-NSC IIa2 terminals are restricted to the external sheath. A third group of cerebral neurosecretory cells, the ventromedial neurons (VM) which stain with the monoclonal antibody to prothoracicotropic hormone in Manduca, are located anteriorly in the medial region of the brain. The axons of these cells do not exit the brain to the retrocerebral complex, but rather pass through the circumesophageal connectives and ventral nerve cord. These neurons appear to be the same VM neurons that produce eclosion hormone. One dendritic field of the L-NSC III terminates in close apposition to the VM neurons. The distinct morphologies of these neurosecretory cell groups in relation to other cell groups and the distribution of neuropeptides within the neurons suggest that insect neurosecretory cells, like their vertebrate counterparts, may have multiple regulatory roles.  相似文献   

5.
1.  A 28-kDa peptide from the brain of the tobacco hornworm,Manduca sexta, was purifiedvia HPLC. The peptide copurified with the insect neurohormone, prothoracicotropic hormone (PTTH), through two HPLC columns.
2.  Immunocyctochemistry using polyclonal antibodies against the 28-kDa peptide revealed that the peptide was produced in the same protocerebral neurons that produce PTTH. Western blot analysis demonstrated that the 28-kDa peptide and big PTTH are different molecules.
3.  A PTTHin vitro bioassay indicated that despite having chromatographic properties similar to those of big PTTH and being produced by the same neurons, the 28-kDa peptide did not have PTTH activity.
4.  Amino acid sequence analysis yielded a 27 N-terminal amino acid sequence that had no similarity with known peptides.
5.  Immunocytochemical studies revealed that the 28-kDa peptide is present as early as 30% embryonic development and is absent by adult eclosion. This is in contrast to big PTTH, which is expressed throughout theManduca life cycle.
6.  These data suggest that the 28-kDa peptide is another secretory phenotype of the lateral neurosecretory cell group III (L-NSC III) which may have functions distinct from those for big PTTH or may act synergistically with big PTTH.
  相似文献   

6.
We produced mouse antisera against synthetic peptides corresponding to the sequences of the Samia cynthia ricini homologues of the Bombyx mori PTTH and bombyxin. Immunohistochemical analyses of the Samia cephalic neuroendocrine system using these antisera were performed to identify the neurosecretory cells (NSC) containing the PTTH and bombyxin homologues and to examine the developmental changes in their amounts in the NSC. The results show that the PTTH and bombyxin homologues are produced by two pairs of dorsolateral and 16 pairs of dorsomedial NSC of Samia brain, respectively, and both are transported to, and released from, the corpora allata. No clear-cut correlation was found between the fluctuation in the amount of immunoreactive substances in the brain NSC and the endocrinologically anticipated timings of PTTH secretion. From Samia brain extract, two forms of PTTH activity (∼30 kDa and ∼5 kDa) were resolved through Sephadex gel filtration. The ∼30 kDa and ∼5 kDa PTTH seem to represent the PTTH and bombyxin homologues, respectively. We discuss that the ∼30 kDa PTTH homologue is the true PTTH of Samia .  相似文献   

7.
SYNOPSIS. An in vitro assay for the insect prothoracicolropichormone (PTTH) has been developed which measures the rate ofecdysone synthesized by Manduca sexta prothoracic glands (PG)stimulated in vitro by PTTH. This assay has been used to quantifyPTTH in single neurosecretory cells (NSC) resulting in the identificationof one NSC in each hemisphere of the brain as the prothoracicotrope,source of PTTH. The axonal and dendritic distribution of theprothoracicotrope has been determined by cobalt filling withsilver intensification. From a comparison of the titers of PTTHin brains, corpora cardiaca and corpora allata during larval-pupaldevelopment, the corpus allatum has been identifiedas the neurohemalorgan for PTTH. Electron microscopic analyses suggest that theacellular sheath surrounding the corpus allatum contains theaxon terminals of the prothoracicotropes. There is at least one form of PTTH, {small tilde}22,000 molwt (big PTTH), and possibly a smaller form of about 7,000 molwt (small PTTH). Bioassay and PTTH hemolymph titer data duringthe head critical period (HCP) for larval-larval developmentreveal that big PTTH is released as a single peak lasting {smalltilde}6 hr. By contrast, during the first HCP of the last larvalinstar PTTH is released over a period of {small tilde}18 hrin three bursts, but its molecular weight has not been establishedwith certainty. The kinetics of PG activation by these two formssuggest that big PTTH may function to activate the PG dramaticallyand thereby elicit molting, while small PTTH may activate thePG minimally at the time of cellular reprogramming.  相似文献   

8.
Summary The cerebral origins and axonal trajectories of neurons projecting to the retrocerebral complex of the cricket, Teleogryllus commodus, were examined in silver-intensified nickel preparations. Spatially separate groups of somata in the pars intercerebralis (PI) and in the pars lateralis (PL), commonly accepted as neurosecretory loci, were found to give rise to axons which terminate in the nervus corporis allati 2, the corpus allatum, or the corpus cardiacum. Additional findings demonstrated a distinct group of somata from the PI whose axons run in the esophageal nerve (stomatogastric nervous system), nine somata in the subesophageal ganglion with axons projecting into the nervus corporis allati 2, and also a small cluster of tritocerebral perikarya with axons terminating in the corpus cardiacum. Somata residing in the PI and PL were found to be compartmentally organized based upon the retrocerebral destinations of their axons. Possible functional consequences of these results with respect to the insect neurosecretory system are discussed.  相似文献   

9.
10.
A monoclonal antibody to peptidergic neurons in the neuroendocrine system of the Colorado potato beetle immunohistochemically labels neuropeptide-like substances throughout the cephalic neurosecretory system of the American cockroach, Periplaneta americana. The dictyopteran antigen shows a histological distribution similar to that of the neuropeptide-like material which we have described earlier using (FM)RFamide specific antibodies. It was conclusively demonstrated, particularly by means of a convenient double labelling procedure, that the (FM)RFamide- and the coleopteran neuropeptide-like antigens are not localized in the same neuronal structures, although both neurochemicals are in close vicinity to one another. The relative abundance of the immunoreactive products in neurons throughout the cockroach nervous system and retrocerebral complex, in addition to its apparently homologous distribution in species of different insect orders, suggests an important role of this material in insect neuro(endocrine)-physiology.  相似文献   

11.
Immunocytochemical staining based on the peroxidase-antiperoxidase method has shown that some neurosecretory cells (NSC) in the synganglion of the adult female tickOrnithodoros parkeri react with an antibody to bovine insulin. There are 18 regions of paraldehyde fuchsin-positive NSC of which three regions showed specific insulin-like immunoreactivity: anterolateral cheliceral, anteromedial stomodeal and posterior opisthosomal. Immunoreactivity can also be found in the extracellular surface of the neurilemma of the synganglion. This suggests a possible neurohemal site and release of neurohormone in a diffuse manner.  相似文献   

12.
The neuroendocrine system of the homopteran, Idiocerus atkinsoni has been described, employing a neurosecretory stain. Two groups of medial neurosecretory cells (NSC) of one tinctorial type are present in the pars intercerebralis of the brain. Processes believed to be dendrites of the neurosecretory neurons lie superficially underneath the neurilemma and enclose neurosecretory material (NSM). Both the nervi corporis cardiaci, NCCI and NCCII, are branched. The branches of the former join to form an oesophageal nerve that runs on the oesophageal surface and terminates on the midgut, and those of the latter, innervate the oesophageal dilator muscles. Besides being present in the dendrite-like processes and NSC, the NSM is also seen in the NCCI, anterior part of the aorta and oesophageal nerve but not in the NCCII, corpora cardiaca (CC) and the corpus allatum (CA). It is suggested that the release of NSM into the circulation in this insect occurs through two main routes: the dendrites and the aorta. The evolution of the aorta as an exclusive neurohaemal organ in Hemiptera is discussed.  相似文献   

13.
Lee KJ  Watson RD 《Peptides》2002,23(5):853-862
In crustaceans, the synthesis of ecdysteroid molting hormones is regulated by molt-inhibiting hormone (MIH), a neuropeptide produced by an eyestalk neuroendocrine system, the X-organ/sinus gland complex. Using sequence analysis software, two regions of the blue crab (Callinectes sapidus) MIH peptide were selected for antibody production. Two 14-mer peptides were commercially synthesized and used to generate polyclonal antisera. Western blot analysis revealed that each antiserum bound to proteins of the predicted size in extracts of C. sapidus sinus glands, and lysates of insect cells containing recombinant MIH. Thin section immunocytochemistry using either antiserum showed specific immunoreactivity in X-organ neurosecretory cell bodies, their associated axons and collaterals, and their axon terminals in the sinus gland.  相似文献   

14.
Summary

The brain-retrocerebral complex (br-complex) of Rhodnius prolixus was found both to contain and release neuropeptides related to Bombyx mori PTTH and bombyxin. A > 10 kDa peptide fraction obtained from extracts and incubation media of br-complex exhibited high steroidogenic activity on Rhodnius prothoracic glands and reacted with a Bombyx PTTH antibody on dot blots. The release from the Br-complex of this immunoreactive peptide fraction showed a daily rhythm: high release during the night and little on no release during the day. On Western blots, a single 68 kDa peptide in the > 10 kDa peptide fraction was recognized by the Bombyx PTTH antibody and was also released rhythmically during a day. This peptide was reduced to a doublet of about 17 kDa that retained immunoreactivity. Double immunoprecipitation of the > 10 kDa peptide fraction from brain media using the Bombyx PTTH antibody and agarose-bound secondary antibody removed the steroidogenic activity in this fraction; it also removed the 68 kDa peptide on Western blots. A bombyxin antiserum recognized a 3–5 kDa peptide in a <10 kDa peptide fraction; this peptide fraction was also released with a daily rhythm but possessed weak steroidogenic activity. The natural PTTH of Rhodnius, therefore, appears to be a 68 kDa peptide, possibly composed of several 17 kDa subunits, that is related to Bombyx PTTH.  相似文献   

15.
A monoclonal antibody that recognized the Bombyx prothoracicotropic hormone (PTTH) was produced by immunizing mice with a synthetic pentadecapeptide corresponding to the amino-terminal portion of Bombyx PTTH. The antibody recognized both intact and reduced forms of PTTH. Immunohistochemistry with this antibody has demonstrated that PTTH is produced by two pairs of dorso-lateral neurosecretory cells of the brain and transported to the corpora allata by axons running through the contralateral hemisphere of the brain. Immunoreactive axon terminals in the corpora allata were localized between the glandular cells, suggesting that PTTH is released at the inner part of this organ.  相似文献   

16.
Summary The ventral cord ganglia of the horseshoe crab, Limulus polyphemus, contains six distinct cell types: three appear to be ordinary neurons and three exhibit the staining affinities of neurosecretory cells.The presumed neurosecretory cells have been termed neurosecretory cell I (NSC I), NSC II and NSC III. NSC I cells contain a colloid-like inclusion which may occur as a single small vacuole or occupy more than one-half of the cell volume. Colloid inclusions occur with greater frequency toward the periphery, although small cells of similar staining affinity occur in cords extending to the fibrous core. The histochemical tests suggest that the cytoplasm is positive for proteins, but contains no strong acidic groups which may have been derived from S-S or S-H groups. The presence of carbohydrate is also indicated.NSC II cells exhibit distinct secretory cycles. Early in the cycle the cytoplasm becomes phloxinophilic and progresses to a distinct fuchsinophilic stage. Small homogeneous irregular inclusions are found in the axon hillock during the latter stages of the cycle. Histochemical tests suggest the presence of a carbohydrate and strong acidic groups which may have been derived from S-S or S-H groups. There are small cells present which appear to be immature neurosecretory cells.NSC III cells are characterized by a perinuclear ring of cytoplasm which is stained by chrome alum hematoxylin but not by paraldehyde fuchsin. A secretory cycle may also be present in this cell type.The three cell types presumed to be ordinary neurons exhibit no particular staining affinity for the stains or tests used in this study.This study was supported in part by a grant from the Central Fund for Research of the Pennsylvania State University.  相似文献   

17.
Ovary maturing parsin (OMP) is a gonadotrophic molecule previously isolated from the neurosecretory lobes of the corpora cardiaca of Locusta migratoria (acridian Orthoptera). A polyclonal antiserum directed against the two biologically active domains of the L. migratoria (Lom) OMP was used to investigate the occurrence of Lom OMP-like substances in brain-corpora cardiaca complexes of other insect species. Using immunohistochemistry, specimens of 40 different insect species belonging to 13 insect orders were tested. The Lom OMP-like substance was strictly limited to specimens of insect species belonging to the Acridae. It occurred in non-basophilic cells of the pars intercerebralis that project to the corpora cardiaca, as in Locusta. Although the antiserum only detected Lom OMP-like material in the Acridae, it is possible that related molecules exist in other insects. The antiserum may be very specific for domains of the Lom OMP molecule that have not been highly conserved during evolution or possibly these domains are not accessible to the antiserum in other insects.  相似文献   

18.
Using the Galleria prothoracicotropic bioassay, five small neurosecretory cells occurring in each dorsolateral part of protocerebrum of Galleria mellonella brain were identified as prothoracicotropic hormone (PTTH) cells. It was found that the critical period for the release of PTTH from a brain implanted in neck-ligated larva lasts up to the third day after implantation. The content of paraldehyde-fuchsin positive neurosecretory material (NSM) in PTTH cells was determined during the penultimate and last larval instar, during pupal instar, and in starved or poststarvation fed or space-deprived last instar larvae. Two peaks of NSM in PTTH cells were found in the penultimate instar (in freshly molted, and 76-h-old larvae), four peaks in the last instar larvae (in freshly molted, and in 67-, 132-, and 174-h-old larvae), and one peak in the pupal instar (in 56-76-h-old pupae). It was also observed that upon starvation NSM accumulated in PTTH cells, while after 3 h of poststarvation feeding it was released. In permanent space-deprived last instar larvae no NSM occurred in PTTH cells. In all investigated larval instars a rapid release of NSM from PTTH cells was found a few hours after molt associated with the beginning of the feeding period. The significance of the NSM content in PTTH cells is discussed in relation to ecdysteroid titer.  相似文献   

19.
Summary An antiserum was obtained by immunizing rabbits with sinus gland extracts from Carcinus maenas. The antiserum is almost exclusively directed against neurosecretory material in the medulla terminalis X-organ (MTGXO), as demonstrated by the peroxidase—antiperoxidase (PAP) staining method in light and electron microscopic studies. Radioimmunological binding studies indicate the presence of antibodies against the crustacean hyperglycemic hormone (CHH) or the black pigment dispersing hormone (BPDH) in the antiserum. The results suggest that the neurosecretory perikarya of the MTGXO are the sites of production of CHH and/or BPDH.Supported by the Deutsche Forschungsgemeinschaft (Ke 206/2)  相似文献   

20.
Summary The neurosecretory system of the freshwater snail Bulinus truncatus was investigated. With the Alcian blue-Alcian yellow (AB/AY) staining method at least 10 different types of neurosecretory cells (NSC) were distinguished in the ganglia of the central nervous system. The differences in staining properties of the NSC — with AB/AY the cells take on different shades of green and yellow — are borne out at the ultrastructural level: the NSC types contain different types of neurosecretory elementary granules.The neurosecretory system of B. truncatus is compared to that of Lymnaea stagnalis, the species which has received the most attention among the pulmonates. It appears from the comparison that the systems of both species show many similarities, although some differences are also apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号