首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary

A vesicle which contains moderately electron-dense material has been found at the apex of mature spermatozoa in all representatives of three pleurogonan families: in Styela clava, Cnemidocarpa finmarkiensis and Botryllus schlosseri (family Styelidae), in Boltenia villosa and Herdmania momus (family Pyuridae), and in Molgula manhattensis (family Molgulidae). The vesicle described here resembles the acrosome of Ciona intestinalis spermatozoa. The Ciona acrosome shows structural changes at fertilization (Fukumoto, M., J. Ultrastruct. Res., 87 (1984) 252–262). This suggests that pleurogonan spermatozoa also have an acrosome. Some speculations are presented on ascidian fertilization.  相似文献   

2.
The effects of seven surfactants on spermatozoa of the sea urchin, Hemicentrotus pulcherrimus, were studied. All these surfactants induced the acrosome reaction and inhibited the fertilizing capacity of spermatozoa. There was a statistically significant correlation between the concentrations that induce the acrosome reaction and inhibit fertilization. The critical micelle concentrations (CMC) of surfactants in sea water were almost even and these values, which are inherent physical properties of surfactants, did not provide a direct measure of their inhibitory effect of fertilization. Among seven surfactants, p-menthanyl-phenol polyoxyethylene (8.8) ether (TS-88) with a characteristic hydrophobes was the most potent both in the induction of acrosome reaction and in the inhibition of fertilization. Various ethylene oxide adducts to p-menthanyl-phenol were also tested for the purpose of comparison. It is suggested that the effects of surfactants on sea urchin spermatozoa at low concentrations reflect their activity associated with the hydrophobic group inherent in each surfactant.  相似文献   

3.
The effects of lipids on the survival, acrosome reaction, and fertilizing capacity of guinea pig spermatozoa were studied by incubating the spermatozoa in media containing various concentrations of the lipids. Lipids tested were: phosphatidyl-choline (PC), -ethanolamine (PE), -inositol (PI), -serine (PS), sphingomyelin (S), cholesterol (C), lysophosphatidyl-choline (LC), -ethanolamine (LE), -inositol (LI), -serine (LS), and glyceryl monooleate (M). When spermatozoa were incubated in a regular medium (containing 2 mM Ca2+) with M, the majority underwent the acrosome reaction within 1 hour. None of the other lipids were as effective as M, and some were totally ineffective under the same conditions. However, when spermatozoa were preincubated in Ca2+-free medium containing LC, LE, or LI, they gained the ability to undergo the acrosome reaction. One hour of preincubation in Ca2+-free medium with LC, LE, or LI was enough to render the vast majority of spermatozoa capable of undergoing the acrosome reaction in response to Ca2+. The optimum concentrations for LC, LE, and LI were approximately 85 μg/ml, 210 μg/ml, and 140 μg/ml, respectively. Spermatozoa that had undergone the acrosome reaction by pretreatment with LC, LE, or LI remained actively motile and were capable of fertilizing eggs. LS was totally ineffective in rendering the spermatozoa capable of undergoing the acrosome reaction, and in fact it inhibited the acrosome reaction by itself and also inhibited the LC-, LE-, or LI-mediated acrosome reaction. LS did not prevent acrosome-reacted spermatozoa from penetrating the zona pellucida, but did prevent sperm-egg fusion. Based on these findings, it is suggested that lysophospholipids are intricately involved in the sperm acrosome reaction and perhaps in sperm-egg fusion.  相似文献   

4.
The majority of the spermatozoa precapacitated in Ca2+-free medium underwent the acrosome raction rapidly when they were transferred to Ca2+-containing medium. The presence of Na+ and Ca2+ in the medium was essential for the acrosome reaction. The vast majority of spermatozoa failed to undergo the reaction in Ca2+ medium lacking monovalent ions, although they remained motile. At the concentration of 140 mM, Na+, K+, Rb+, and Cs+ all supported the reaction at the maximum level, but at 50 mM the latter three ions were not as effective as Na+. Li+ was least effective in supporting the reaction. Virtually no acrosome reactions took place when precapacitated spermatozoa were first exposed to Na+ medium (no Ca2+) and then to Ca2+ medium (no Na+). On the other hand, a considerably higher proportion of spermatozoa acrosome reacted when they were exposed to these media in the reverse order. The most efficient acrosome reactions took place when the medium contained both a monovalent ion (Na+) and Ca2+ simultaneously. Possible mechanisms by which monovalent and divalent cations participate in the acrosome reaction are discussed.  相似文献   

5.
Human ejaculated spermatozoa were washed through a Percoll gradient, preincubated for 10 hr in a defined medium containing serum albumin, and then induced to undergo rapid acrosome reactions by addition of human follicular fluid or a Sephadex G-75 column fraction of the fluid. Induction by follicular fluid did not occur when the spermatozoa were preincubated for only 0 or 5 hr. The reactions were detected by indirect immunofluorescence using a monoclonal antibody directed against the human sperm acrosomal region. The percentage of acrosomal loss counted by transmission electron microscopy agreed with that counted by immunofluorescence. The apparent molecular weight of the Sephadex G-75 fraction containing the peak of acrosome reaction-inducing activity was 45,000 ± 4,200 (SD). The occurrence of physiological acrosome reactions was supported by: assessing motility (no significant loss of motility occurred during the treatment period when sperm were preincubated with bovine serum albumin), transmission electron microscopy (the ultrastructural criteria for the acrosome reaction were met), and zona-free hamster oocyte binding and penetration (spermatozoa pretreated with the active fraction of follicular fluid, then washed and incubated with oocytes, showed significantly greater binding to and penetration of oocytes). The stimulation of the acrosome reaction by follicular fluid is apparently not due to blood serum contamination; treatment of preincubated spermatozoa with sera from the follicular fluid donors had no effect on the spermatozoa. The nature of the active component(s) in that fraction is currently being investigated.  相似文献   

6.
The distribution of ATPase activity in the heads of uncapacitated, capacitated, and acrosome-reacting guinea-pig spermatozoa was examined cytochemically using the Wachstein-Meisel's technique. In uncapacitated spermatozoa, the reaction products of the enzyme activity were localized on both the inner surface of the plasma membrane and the outer surface of the outer acrosomal membrane. The activity was Mg2+-dependent and inhibited by both Ca2+ and SH-blocking agents. This Mg2+-dependent ATPase activity was also demonstrated at the same sites in capacitated spermatozoa, whereas it was completely absent in acrosome-reacting spermatozoa. Although we did not determine the exact time of inactivation of the enzyme, it appeared to occur before the plasma membrane fused with the underlying outer acrosomal membrane. The abrupt loss of the Mg2+-dependent ATPase activity in the plasma and outer acrosomal membranes immediately before the onset of the acrosome reaction seems to suggest that inactivation of this enzyme by Ca2+ is one of the important biochemical events involved in the acrosome reaction.  相似文献   

7.
Little is known about the timing of the mammalian sperm acrosome reaction during fertilization in vivo. To study this problem, female hamsters were inseminated at about the time of ovulation, and the contents of the ampullary regions of their oviducts were subsequently examined at various intervals. No living spermatozoa were recovered from ampullae earlier than 4 hr after insemination. The first appearance of living spermatozoa coincided closely with the first appearance of fertilized eggs in the same oviduct. The total numbers of living spermatozoa did not start to exceed the number of eggs in the same ampulla, until after 50% or more of the eggs had been fertilized. Hamster spermatozoa are highly efficient at making contact with eggs, and the fertilizing spermatozoon probably spends no more than 2½ –5½ min in penetrating the cumulus oophorus. Spermatozoa that enter the ampulla appear to be ready to undergo the acrosome reaction, and complete it while they are passing through the cumulus or shortly before, or after, contacting the surface of the zona pellucida.  相似文献   

8.
The effect of the calmodulin antagonist W-7 on the capacitation and the acrosome reaction of guinea pig spermatozoa was examined. The characteristic features of the acrosome reaction induced by W-7 were the dependence on the composition and pH of the medium and on the presence of sodium bicarbonate. The most effective concentration of W-7 for inducing the acrosome reaction was approximately 5 μM, which is far less than the Kd for calmodulin. Moreover, W-7 enhanced the ability of spermatozoa to acquire capacitation in a Ca2+-free medium. The spermatozoa induced to undergo the acrosome reaction by W-7 were capable of penetrating the zona-free hamster eggs. W-5, which has a lower affinity for calmodulin than W-7, also induced the acrosome reaction in the same manner as W-7. These results suggest that the naphthalenesulfonamide derivatives W-7 and W-5 can induce the acrosome reaction in guinea pig spermatozoa via capacitation in a pH-dependent, Ca2+-calmodulin-independent manner.  相似文献   

9.
Human sperm were incubated in vitro in serum or the defined medium TMPA and were periodically assessed for acrosome reactions using two new methods of assay. The first method, FITC-RCA labeling, was previously shown to be valid for estimating the percentage of normal acrosome reactions of human sperm. The second method, a triple staining technique, is shown in this study to give results comparable to those obtained with FITC-RCA labeling. The percentage of acrosome-reacted sperm was determined at 0, 2.5, 5, and 7 hr of incubation. In both media, some sperm had reacted by 2.5 hr; a maximum percentage of reactions occurred between 5 and 7 hr. The maximum percentage never exceeded 20–25%, which represents only one-third of the live sperm, ie, those potentially able to undergo normal acrosome reactions. It will be important in future studies to determine if this low-peak percentage is due to the fact that: (1) Commonly used culture media are suboptimal or (2) only about 25% of the sperm in a human ejaculate are capable of undergoing normal acrosome reactions.  相似文献   

10.
The effect of alcohol on the fertilizing ability of both human and hamster spermatozoa was examined by an in vitro fertilization assay using hamster ova. Spermatozoa were incubated in capacitating media for 3 hr (hamster sperm) and 4 hr (human sperm). Hamster ova were inseminated with preincubated sperm and were examined after 2 to 3 hr. Ethanol was added to the capacitating media at concentrations of 25, 50, 100, 200, and 400 mg%. Fertilization of zona-free hamster eggs by human spermatozoa was reduced from 49.6% in no alcohol to 16.7% in 400 mg% ethanol. Fertilization of hamster eggs by hamster sperm revealed a reduction from 63.6% to 33.7% in cumulus-intact eggs and from 65.8% to 10.8% in cumulus-free eggs in the presence of ethanol at 400 mg%. Hamster sperm acrosome reaction was reduced from 47% to 12%. When these hamster sperm with reduced acrosome reaction were placed with zona-free hamster eggs, the 100% fertilization rate was not reduced; however, the fertilization index, which reflects the number of swelling sperm heads per egg, was reduced from 8.5 to 1.8. This suggests that as little as 12% of the sperm with an acrosome reaction is sufficient to fertilize 100% of the zona-free eggs. If ethanol was added to the insemination media only, there was no inhibition of fertilization by human sperm or hamster sperm that had been previously capacitated in an ethanol-free media. Removal of the ethanol from the preincubated sperm produced fertilization at control levels; thus the inhibitory effect is reversible. These results indicate that ethanol may affect fertilization by an inhibition of the capacitation and/or acrosome reaction process.  相似文献   

11.
Adult female golden hamsters were induced to superovulate. When they were mated several hours prior to ovulation or artificially inseminated about the time of ovulation, nearly 100% of their eggs were subsequently fertilized monospermically. During the progression of fertilization when the eggs were still surrounded by compact cumulus oophorus, the contents of the ampullary region of the oviducts were collected and spermatozoa moving in the ampullary fluid, within the cumulus and on/in the zonae pellucidae of unfertilized eggs, were examined by light and electron microscopy to evaluate the status of their acrosomal caps. Most spermatozoa swimming in the ampullary fluid had apparently intact acrosomal caps, while the vast majority moving within the cumulus had distinctly modified acrosomal caps. Most spermatozoa that had passed through the cumulus and reached the zona surfaces had remnants of their acrosomal caps (“acrosomal ghosts”). When the ghosts were present around the sperm heads on the zona, the heads pivoted about a point roughly corresponding to the places where the ghosts were located. The ghosts seemed to firmly attach to the zona surfaces, then were split open by the sperm heads and left behind as the sperm heads advanced into the zona. A few spermatozoa on the zona surfaces had no acrosomal ghosts (at least not detectable by light microscopy). In this case, the sperm head pivoted about either the inner acrosomal membrane or the equatorial segment of the acrosome. In no instance were spermatozoa with intact acrosomal caps found on zona surfaces. We infer from these observations that most spermatozoa in vivo initiate their acrosome reactions while they are advancing through the cumulus. When they arrive at the zona surfaces, acrosomal ghosts are generally present on the sperm heads. These ghosts appear to hold sperm heads to zona surfaces as well as to restrict the direction of advancement of sperm head through the zona. In a minority of cases, ghostless spermatozoa reach the zona surfaces. As these spermatozoa appear to be able to penetrate the zona successfully, structures other than the acrosomal ghost (ie, the inner acrosomal membrane and the plasma membrane over the equatorial segment of the acrosome) may also attach to zona surfaces before spermatozoa penetrate into the zona.  相似文献   

12.
When guinea pig spermatozoa are preincubated for 1 hr in Ca2+?free medium containing a low concentration of lysolecithin (LC, 85 μg/ml) and then exposed to 2 mM Ca2+ by diluting the preincubation medium with an equal volume of LC?free, 4 mM Ca2+?containing medium, the majority of the spermatozoa undergo acrosome reaction promptly. On the other hand, when the preincubated spermatozoa are exposed to 2 mM Ca2+ without reducing the original concentration of LC in the medium, none of them undergo acrosome reaction. These spermatoza can acrosome?react if they are transferred to an LC?free medium. These results and those of some other experiments suggest that in the presistent presence of a high concentration of LC in the medium, exogenous Ca2+ essential for the acrosome reaction either does not penetrate the sperm plasma membrane or, if it does, it cannot alter the membrane for the acrosome reaction, at least under the experimental conditions employed. Freeze?fracture examination of the sperm plasma membrane has revealed that small areas or patches free of intramembranous paarticles (IMPs) appear in the membrance during sperm preincubation, and these IMP?free areas expand drastically in response to Ca2+ when the LC conccentration in the medium is reduced at the time Ca2+ is added to the medium. In contrast, IMP?free areas remain unchanged even after exposure of spermatozoa to Ca2+ if the concentration of LC remains at its original level of 85 μg/ml.  相似文献   

13.
The involvement of a kallikrein−kinin system in the motility of mammalian spermatozoa has been suggested by several investigators. We found that incorporation of kallikrein (0.1–1.0) unit/ml) in the sperm incubation medium did not enhance the motility of hamster spermatozoa that were already active. However, this enzyme significantly increased the incidence of the acrosome reaction. Trypsin (1.8–18 units/ml) and chymotrypsin (0.34–3.4 units/ml) also increased the incidence of the acrosome reaction, and accelerated its onset. Kinins (bradykinin and kallidin) added to the medium in a wide concentration range (1 ng/ml to 1 mg/ml) had no marked effects on either the motility or the acrosome reaction. A kallikrein−kinin system is apparently not of primary importance at least for the acrosome reaction. The enhancement of the acrosome reaction by exogenous proteinases may be due in part to accelerated removal or alteration of the sperm surface coat (glycoprotein) by the enzyme peior to the acrosome reaction. Exogenous proteinases may also act synergistically with endogenous (acrosomal) proteinases (and other enzymes) in altering membrane proteins and dispersing the acrosome matrix during the course of teh acrosome reaction.  相似文献   

14.
Experiments were designed to test the effects of simple sugars and complex polysaccharides on the attachment of mammalian spermatozoa with the zona pellucida. In the guinea pig, L-fucose was a twofold better inhibitor of the attachment compared to other sugars at 50 mM. Fucoidin, an algal polysaccharide rich in sulfated L-fucose, was a very potent inhibitor, completely blocking attachment at a concentration of 100 μg/ml. Several other highly sulfated glycosaminoglycans showed no inhibitory activity, suggesting the fucoidin effect was not simply due to its charge or sulfate. In addition, fragments of fucoidin, generated by partial hydrolysis and isolated using Biogel P-2, were nearly as inhibitory as the native molecule on a weight basis. Fucoidin also inhibited sperm-zona attachment in the hamster and human; thus, its effect is not species specific. The data suggest that L-fucose may be part of a recognition signal between mammalian gametes.  相似文献   

15.
The identity of the sperm surface protein(s) responsible for sperm-zona pellucida binding in the mouse, as well as the characteristics of the oligosaccharide groups on zona pellucida glycoprotein 3 (ZP3) having ligand activity toward this receptor, remain controversial. Conflicting results from several groups have made interpretation of the current data difficult. By developing a quantitative binding assay to evaluate the molecular interactions between mammalian sperm and the zona pellucida during initial gamete interactions, we directly quantified sperm-ZP binding interactions at the molecular level for the first time. The ZP binding assay demonstrated that live, capacitated mouse sperm bind solubilized 125I-labeled ZP glycoproteins in a concentration-dependent manner characterized by a rapid forward rate constant of 3.0 × 107 M−1 min−1. Following the initial characterization, the binding assay was used to examine the roles of the sperm surface enzymes galactosyltransferase (GalTase) and fucosyltransferase (FucTase) in sperm-zone pellucida binding in the mouse. These data indicate that substrates for FucTase, but not for GalTase, inhibit sperm-ZP binding, in contrast to earlier reports in which GalTase substrates significantly inhibited sperm binding to intact ZPs. A model is presented which resolves conflicting results between assays using intact ZPs and the results obtained here using soluble 125I-ZPs. Assuming a complex binding/recognition site, monosaccharides that could occupy part of the binding site would have a dramatic effect on sperm-ZP binding to the intact ZP, since they need only occupy the binding sites for a short time (∼ 100 msec) to disrupt binding. The current results suggest that the sperm ZP3 receptor binding site minimally recognizes the galβ1,3GlcNAc moiety also recognized by FucTases. The current data do not exclude the possibility that additional sugar residues form part of the ligand oligosaccharide group and are recognized by a yet-to-be-identified sperm surface protein which serves as the ZP3 receptor. © 1996 Wiley-Liss, Inc.  相似文献   

16.
The objective was to determine whether N-glycosylation of zona pellucida (ZP) glycoproteins occurred during meiotic maturation of porcine oocytes, and whether this had a role in fertilization. In the first of three experiments, carbohydrate residues in the ZP of in vitro matured porcine oocytes were blocked with various lectins and the influence of such blocking on sperm-ZP interactions was studied. The second experiment used a lectin-binding assay to determine whether the number of GlcNAc residues in ZP was changed by N-glycosylation during in vitro maturation (IVM) of porcine oocytes. The last experiment determined the effects of tunicamycin, a specific N-glycosylation inhibitor, for various intervals during IVM, on sperm-ZP interactions in porcine oocytes. The primary findings were that: 1) N-glycosylation of GlcNAc residues in porcine ZP occurred during the first 24 h of IVM; and 2) such glycosylation was indispensible for sperm-ZP interactions, e.g., number of sperm bound to ZP, acrosome-reacted sperm, sperm penetration rate, and level of polyspermy (P < 0.05). However, blocking N-glycosylation by tunicamycin treatment during IVM did not adversely influence the progression of oocytes to meiotic metaphase II and male pronucleus formation, indicating that this glycosylation was involved only in the initial stages of fertilization. We inferred that the increase in terminal GlcNAc residues in ZP glycoprotein through new N-glycosylation during the first 24 h of meiotic maturation played a critical role in porcine ZP acquiring the capacity to accept sperm.  相似文献   

17.
A role for adhesion molecules in gamete fusion, preceding fertilization, has been previously suggested. We investigated the presence of cadherins, Ca(2+) dependent cell-cell adhesion molecules, in rat oocytes and spermatozoa using an anti-pan-cadherin antibody and specific antibodies against the 3 classical cadherins: E- (epithelial), P- (placental), and N- (neural) cadherins. Electrophoretic separation was performed on samples of lysed oocytes of different stages: germinal vesicle oocytes, metaphase II eggs, newly fertilized and 2-cell embryos, as well as spermatozoa from testes, caput and cauda epididymis and ejaculate. Localization of cadherins was determined on intact, gametes by immunocytochemistry, using confocal microscopy. Immunoblotting with the pan-cadherin antibody revealed a major band of approximately 120 kD in all oocyte and sperm extracts. Oocytes presented E-cadherin at appropriate molecular weight but N-cadherin only as a specific 40 kD band. In sperm lysate, at all stages, both E- and N-cadherin were demonstrated as major protein bands but a series of lower molecular weight proteins (that may represent protein degradation) were also detected. Immunohistochemical evaluation showed that E- and N-cadherins are already present on the plasma membrane of immature unfertilized oocytes, although their concentration increases after fertilization in early cleavage stage embryos. Cadherin localization on spermatozoa changed during maturation from a dispersed pattern over the entire head plasma membrane of testicular spermatozoa to a restricted equatorial and post-acrosomal plasma membrane staining in ejaculated spermatozoa. These findings suggest a specific cadherin organization at the fusogenic domains of both gametes.  相似文献   

18.
The acrosome of Platycleis albopunctata (Orthoptera: Tettigoniidae) is relatively large and complex, consisting of an apical vesicle and two large wing-like extensions that give the spermatozoon the shape of an arrow. The wings have actin microfilaments and microtubules and are covered with a noticeable extracellular material. Actin filaments are present in the acrosome when it first appears in spermatid stages. The acrosome and the acrosomal attachment to the nucleus are more resistant than other structures to the reducing agents DTT and SDS. At the end of spermiogenesis, groups of spermatozoa juxtapose their sperm heads and become joined to form a spermatodesm encircled by an amorphous material. Treatment with the ionophore A23187 rapidly disrupted acrosomes of the free gametes, but acrosomes from spermatozoa contained in the spermatodesm were not disassembled. Packaging of sperm in a spermatodesm appears to protect the acrosome.  相似文献   

19.
The abundance of data pertaining to the metabolism of lipids in relation to mammalian fertilization has warranted an effort to assemble a molecular membrane model for the comprehensive visualization of the biochemical events involved in sperm capacitation and the acrosome reaction. Derived both from earlier models as well as from current concepts, our membrane model depicts a lipid bilayer assembly of space-filling molecular models of sterols and phospholipids in dynamic equilibrium with peripheral and integral membrane proteins. A novel feature is the possibility of visualizing individual lipid molecules such as phosphatidylcholine, phosphatidylethanolamine, lysophospholipids, fatty acids, and free or esterified cholesterol. The model illustrates enzymatic reactions which are believed to regulate the permeability and integrity of the plasma membrane overlying the acrosome during interactions between the male gamete and capacitation factors present in fluids of the female genital tract. The use of radioactive lipids as molecular probes for monitoring the metabolism of cholesterol and phosphatidylcholine revealed the presence of (1) steroid sulfatase in hamster cumulus cells, (2) lecithin: cholesterol acyltransferase in human follicular fluid, (3) phospholipase A2, and (4) lysophospholipase in human spermatozoa. These enzymatic reactions can be integrated into a pathway that provides a link between the concepts of lysophospholipid accumulation in the sperm membranes and alteration of the cholesterol/phospholipid ratio as factors involved in the preparation of the membranes for the acrosome reaction. Capacitation is viewed as a reversible phenomenon which, upon completion, results in a decrease in negative surface charge, an efflux of membrane cholesterol, and an influx of calcium between the plasma and outer acrosomal membranes. Triggered by the entry of calcium, the acrosome reaction involves phospholipase A2 activation followed by a transient accumulation of unsaturated fatty acids and lysophospholipids implicated in membrane fusion which occurs during the formation of membrane vesicles in spermatozoa undergoing the acrosome reaction.  相似文献   

20.
The morphological and biochemical characteristics of the acrosome depart well from any other vesicles in somatic cells, making it one of a kind amongst secretory vesicles. The components of the acrosome include a mixture of unique enzymes like acrosin and other enzymes that when present in somatic cells are commonly found in lysosomes, peroxisomes, and even in the cytoplasm. Several observations have pointed out that acrosomal biogenesis has unique features not previously described in secretory vesicle biogenesis of somatic cells. In this review we discuss the evidence supporting a molecular link between the machinery involved in lysosome and acrosome biogenesis, link which may help account for the acrosome unique composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号