首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraspecific variation among 19 isolates of the ciguatera-causing dinoflagellate Gambierdiscus toxicus Adachi & Fukuyo (Dinophyceae) collected from French Polynesia, New Caledonia, and the French West Indies was investigated by isozyme analysis. Comparison of their cell sizes and growth rates revealed that significant variation exists among these clones. Comparison of electrophoretic patterns for seven enzyme systems indicated that G. toxicus is comprised of numerous biochemically distinct strains. Isolates from Tubuai and Hao appeared to be the most distantly related. Tahitian strains of G. toxicus also showed a remarkably low degree of similarity with the Tubuai isolates. The latter, which were taken from the same locale in Tubuai, also exhibited highly heterogeneous electrophoretic Profiles when compared to each other, suggesting a multiclonal origin. The single isolate analyzed from the Atlantic Ocean was most closely related to Tahitian isolates, despite their geographic separation. Finally, no clear relationship was found between the electrophoretic profiles of these isolates and their capacity to produce ciguatoxic compounds .  相似文献   

2.
Ciguatera fish poisoning (CFP) is a serious health problem in tropical regions and is caused by the bioaccumulation of lipophilic toxins produced by dinoflagellates in the genus Gambierdiscus. Gambierdiscus species are morphologically similar and are difficult to distinguish from one another even when using scanning electron microscopy. Improved identification and detection methods that are sensitive and rapid are needed to identify toxic species and investigate potential distribution and abundance patterns in relation to incidences of CFP. This study presents the first species‐specific, semi‐quantitative polymerase chain reaction (qPCR) assays that can be used to address these questions. These assays are specific for five Gambierdiscus species and one undescribed ribotype. The assays utilized a SYBR green format and targeted unique sequences found within the SSU, ITS, and the D1/D3 LSU ribosomal domains. Standard curves were constructed using known concentrations of cultured cells and 10‐fold serial dilutions of rDNA PCR amplicons containing the target sequence for each specific assay. Assay sensitivity and accuracy were tested using DNA extracts purified from known concentrations of multiple Gambierdiscus species. The qPCR assays were used to assess Gambierdiscus species diversity and abundance in samples collected from nearshore areas adjacent to Ft. Pierce and Jupiter, Florida USA. The results indicated that the practical limit of detection for each assay was 10 cells per sample. Most interestingly, the qPCR analysis revealed that as many as four species of Gambierdiscus were present in a single macrophyte sample.  相似文献   

3.
A new, toxin-producing, benthic dinoflagellate named Gambierdiscus yasumotoi sp. nov. was isolated from macroalgae from the fringing coral reef surrounding the Singapore island of Pulau Hantu. The plate formula of G. yasumotoi is Po , 3', 7", 6c, 6s, 5"', and 2"". Gambierdiscus yasumotoi has a globular shape and is not anterior-posteriorly compressed as are the two other known species in this genus, G. toxicus Adachi et Fukuyo 1979 and G. belizeanus Faust 1995. The girdle descends one to two girdle widths without overhang in contrast to the ascending girdles of G. toxicus and G. belizeanus. The dimensions of cultured G. yasumotoi were 45–63 μm in length, 38–50 μm in transdiameter and 43–61 μm in dorsoventral diameter. The thecae are smooth without areolae. The apical pore plate has the characteristic fishhook shape of Gambierdiscus, but it is significantly longer than G. toxicus. Cells from young cultures of G. yasumotoi are positively phototropic.  相似文献   

4.
A bioactive compound that induced ecdysis (thecal loss) in Gambierdiscus toxicus Adachi et Fukuyo (Dinophyceae) cultures was isolated from a host macroalga, Bryopsis sp. (Chlorophyta). The ecdysis factor was identified by spectroscopic methods as 1- O -palmitoyl-3- O -(6'-sulfo-α- d -quinovopyranosyl)- sn -glycerol (PSQG). From our results, PSQG induced ecdysis at a high frequency and appeared not to inhibit the growth of G. toxicus cultures. The induction of ecdysis followed a dose-dependent saturation curve from 4 to 8 μM PSQG. To determine specificity of PSQG, the effects of palmitoyl- l -α-lysophosphatidylcholine (PLPC) were observed. Because PLPC contains a lipophilic palmitoyl moiety and hydrophilic phosphatidyl choline group, the compound possesses a detergent-like amphiphathic property similar to PSQG. Our results demonstrate that PLPC induced ecdysis at a high frequency in G. toxicus cultures and generated a similar dose–response curve as PSQG. The ecdysis activity observed in PSQG and PLPC may correlate with the detergent-like amphiphathic property of both compounds. Although PLPC induced a similar ecdysis response as PSQG, PLPC appeared to inhibit the growth of G. toxicus cultures. Preliminary results on the effects of PSQG on the dinoflagellates Prorocentrum lima (Ehrenberg) Dodge and Coolia monotis Meunier did not parallel the results observed in G. toxicus. This study demonstrated the existence of a factor from Bryopsis sp. that elicited a possible species-specific ecdysis response in G. toxicus cultures. This is the first report of a compound that induced ecdysis in G. toxicus or in any dinoflagellate.  相似文献   

5.
The genetic diversity of the ciguatera fish poisoning-related dinoflagellate distributed in Japanese coastal areas was investigated. The entire sequence of the 5.8S rRNA gene and two internal transcribed (ITS) regions were determined, which included putative pseudogenes, from 19 strains of dinoflagellates assigned to the genus Gambierdiscus Adachi et Fukuyo collected from Japanese subtropical and temperate coastal areas. The sequences obtained from the 19 strains were divided into two types based on sequence similarity. Here we designate the two types as type 1 and type 2. For the relationship between the genotypes and origins of the strains used, the strains collected from subtropical areas possessed the type 1 sequence; whereas those from temperate areas possessed the type 2. This observation led us to question former reputations that Gambierdiscus cells observed in Japanese temperate areas are immigrants from Japanese subtropical areas. Subsequently, we sequenced a part of the 18S rRNA gene from two strains from subtropical areas and two from temperate areas. Unfortunately, phylogenetic analysis including the sequences obtained from various gonyaulacales dinoflagellates failed to determine the species phylogenetically closely related to and possible origin(s) of the Gambierdiscus sp. from the Japanese coastal areas.  相似文献   

6.
The estuarine dinoflagellate, Prorocentrum mariaelebouriae (Parke & Ballantine 1957) Faust 1974 undergoes increases in pigmentation and photosynthetic efficiency within several days of downward light shifts. These changes can be described by first-order kinetics, as has been reported previously for Chlorophyll (Chl) a in several phytoplankton species. The studies described in this paper were conducted with isolates of populations of Prorocentrum from the Chesapeake Bay. We determined rates of adaptation to low-light for cultures grown at a range of photon flux densities (I0= 2.65–26.2 E.m?2, d?1, shifted to 6.3–7.0% I0) at three temperatures (10°, 15°, and 20° C), bracketing the conditions this species experiences in situ. In this paper, I report the time-course of changes in α, Pmax Chl a, peridinin, and Ik and first-order rate constants, K1 for changes in α, Chl a and peridinin. cell?1. K1 for changes in α cell?1 averaged 1.58 × 10?2 h?1 for conditions encompassing five light treatments and three temperatures; the corresponding mean for Chl a was 1.59 × 10?2 h?1. Increases in peridinin measured for five light treatments at 15° C showed a mean K1 of 1.22 × 10?2 h?1, Average percent changes in per cell α, Chl a, and peridinin ranged from 0.4–4.0% h?1 (10–90% d?1) following exposure to low-light. Photoadaptive changes are important to Prorocentrum because in nature it occupies turbid waters (Kt≥ 0.5 m?1) where the mixing depth often exceeds the depth of the photic layer. Cells are entrained beneath a seasonally-stable density discontinuity and are exposed to very low-light (< I E.m?2.d?1) for days to weeks during subpycnocline transport. The ability of this species to undergo changes in pigmentation and photosynthetic physiology confers increased efficiency of light harvesting and contributes to this species’survival in the estuary where it is an important component of the dinoflagellate flora.  相似文献   

7.
We describe temporal changes in the genetic structure of populations of the dinoflagellate Prorocentrum micans Ehrenberg over a period of 2 years at Scripps Pier (La Jolla, CA, USA). We collected 12 water samples over the course of two blooms and analyzed 166 single‐cell isolates using randomly amplified polymorphic DNA analysis. Six PCR primers uncovered 27 polymorphic markers, allowing the identification of 40 unique haplotypes. Analysis of molecular variance demonstrated that >92% of the genetic variance was partitioned within water samples, providing evidence of high levels of genetic diversity and possibly sexual reproduction. Although the level of genetic diversity remained fairly stable over the sampled time interval, several populations (sampled in June 1998 and March 1999) exhibited significantly different genetic composition, demonstrating differences among bloom and nonbloom periods. About 40% of the isolates in each sample were identified as one haplotype, suggesting that a genetically distinct subgroup was a common member of the populations during the sampled periods. The composition of the remaining isolates was genetically diverse and changed over time, indicating rapid responses (days) to changing environmental conditions or extensive genetic spatial patchiness (kilometers). Within the limitations of our sampling, these two genetically distinct groups appear to exhibit different population dynamics (one stable and the other variable), suggesting that genetic diversity may be closely linked to the change in abundance of phytoplankton on ecological time scales.  相似文献   

8.
The toxic dinoflagellate Gymnodinium catenatum Graham has formed recurrent toxic blooms in southeastern Tasmanian waters since its discovery in the area in 1986. Current evidence suggests that this species might have been introduced to Tasmania prior to 1973, possibly in cargo vessel ballast water carried from populations in Japan or Spain, followed by recent dispersal to mainland Australia. To examine this hypothesis, cultured strains from G. catenatum populations in Australia, Spain, Portugal, and Japan were examined using allozymes and randomly amplified polymorphic DNA (RAPD). Allozyme screening detected very limited polymorphism and was not useful for population comparisons; however, Australian, Spanish, Portuguese, and Japanese strains showed considerable RAPD diversity, and all strains examined represented unique genotypes. Multidimensional scaling analysis (MDS) of RAPD genetic distances between strains showed clear separation of strains into three nonoverlapping regional clusters: Australia, Japan, and Spain/Portugal. Analysis of genetic distances between strains from the three regional populations indicated that Australian strains were almost equally related to both the Spanish/Portuguese population and the Japanese population. Analysis of molecular variance (AMOVA) found that genetic variation was partitioned mainly within populations (87%) compared to the variation between the regions (8%) and between populations within regions (5%). The potential source population for Tasmania’s introduced G. catenatum remains equivocal; however, strains from the recently discovered mainland Australian population (Port Lincoln, South Australia, 1996) clustered with Tasmanian strains, supporting the notion of a secondary relocation of Tasmanian G. catenatum populations to the mainland via a shipping vector. Geographic and temporal clustering of strains was evident among the Tasmanian strains, indicating that genetic exchange between neighboring estuaries is limited and that Tasmanian G. catenatum blooms are composed of localized, estuary-bound subpopulations.  相似文献   

9.
Populations of insect herbivores that feed on several host plant species may experience different selective forces on each host. When the hosts cooccur in a local area, herbivore populations can provide useful models for the study of evolutionary mechanisms in patchy environments. A first step in such a study involves determination of the genetic structure of host adaptation in the region: how is genetic variation for host use structured within and between subpopulations of herbivores on each host? The structure of genetic variation for host use reveals patterns of local adaptation, probable selective consequences of migration between hosts, and the potential for further evolution. To estimate the population structure of host adaptation in a patchwork, 7–11 pea aphid clones were collected at the beginning of the summer from each of two alfalfa and two red clover fields within a very localized area (about 15–20 km2). Using a reciprocal transplant in the field, replicates of these 35 clones were allowed to develop individually on each of the two crops. A complete life table was made for each replicate. Individual fitness was calculated from the life tables as the expected rate of population increase; longevity, age at first reproduction, and total fecundity were also measured for each clonal replicate. Currently, experimental estimates of genetic variation in complete life tables are virtually nonexistent for natural populations, even for single environments (Charlesworth, 1987); field studies are even less common. Because clones from each of two source crops were tested reciprocally on both hosts, variation in relative genotypic fitness on alfalfa and clover could be partitioned among clones within source crops, between fields of the same crop, and between source crops (alfalfa or red clover), providing a view of population structure. Significant clonal variation in relative performance on alfalfa and red clover was found: clones tended to have higher fitness on the crop from which they had been collected (the “home” crop) than they did on the “away” crop, suggesting local adaptation in response to patchy patterns of selection. Clonal variability within collections from the two crops suggests the potential for changes in the genetic constitution of these aphid populations within established fields as a result of clonal selection during the summer season. Significantly negative genetic correlations across crops were found for fitness and its major components. The possibility that these negative cross-environment correlations could act as evolutionary constraints on adaptation to the patchwork is considered.  相似文献   

10.
Three new dinoflagellate species, Gambierdiscus polynesiensis, sp. nov., Gambierdiscus australes, sp. nov., and Gambierdiscus pacificus, sp. nov., are described from scanning electron micrographs. The morphology of the three new Gambierdiscus species is compared with the type species Gambierdiscus toxicus Adachi et Fukuyo 1979, and two other species: Gambierdiscus belizeanus Faust 1995 and Gambierdiscus yasumotoi Holmes 1998. The plate formula is: Po, 3′, 7", 6C, 8S, 5‴, 1p, 2". Culture extracts of these three new species displayed both ciguatoxin- and maitotoxin-like toxicities. The following morphological characteristics differentiated each species. 1) Cells of G. polynesiensis are 68–85 μm long and 64–75 μm wide, and the cell’s surface is smooth. They are identified by a large triangular apical pore plate (Po), a narrow fish-hook opening surrounded by 38 round pores, and a large, broad posterior intercalary plate (1p) wedged between narrow postcingular plates 2‴ and 4‴. Plate 1p occupies 60% of the width of the hypotheca. 2) Cells of G. australes also have a smooth surface and are 76–93 μm long and 65–85 μm wide in dorsoventral depth. They are identified by the broad ellipsoid apical pore plate (Po) surrounded by 31 round pores and a long and narrow 1p plate wedged between postcingular plates 2‴ and 4‴. Plate 1p occupies 30% of the width of the hypotheca. 3) Cells of G. pacificus are 67–77 μm long and 60–76 μm wide in dorsoventral depth, and its surface is smooth. They are identified by the four-sided apical pore plate (Po) surrounded by 30 round pores. A short narrow 1p plate is wedged between the wide postcingular plates 2‴ and 4‴. Plate 1p occupies 20% of the width of the hypotheca. These three newly described species were also characterized by isozyme electrophoresis and DNA sequencing of the D8–D10 region of their large subunit (LSU) rRNA genes. The consistency between species designations based on SEM microscopy and classification inferred from biochemical and genetic heterogeneities was examined among seven isolates of Gambierdiscus. Their classification into four morphospecies was not consistent with groupings inferred from isozyme patterns. Three molecular types could be distinguished based on the comparison of their LSU rDNA sequences. Although G. toxicus TUR was found to be more closely related to G. pacificus, sp. nov. than to other G. toxicus strains, the molecular classification was able to discriminate G. polynesiensis, sp. nov. and G. australes, sp. nov. from G. toxicus. These results suggest the usefulness of the D8–D10 portion of the Gambierdiscus LSU rDNA as a valuable taxonomic marker.  相似文献   

11.
The sub-thecal microtubular cytoskeleton of Amphidinium rhynchocephalum Anissimowa was investigated using indirect immunofluorescence microscopy and transmission electron microscopy. The majority of sub-thecal microtubules are longitudinally oriented and radiate from one of two sub-thecal transverse microtubular bands that lie adjacent to the anterior and posterior edge of the cingulum.Both transverse bands consist of 3–5 microtubules and are loop shaped with one end adjacent to the cell's right edge of the sulcus and the other end adjacent to the fibrous ventral ridge. The posterior transverse microtubular band (PTB) defines the posterior edge of the cingulum and gives rise to numerous posteriorly directed longitudinal microtubular bundles that consist of 1–3 microtubules per bundle. These bundles end at the posterior end of the cell. The PTB also gives rise to the cingular longitudinal microtubules that underlie the cingular groove and terminate at the anterior transverse microtubular band (ATB). The ATB defines the anterior edge of the cingulum and loops around the base of the epicone. This band gives rise to anteriorly directed longitudinal microtubular bundles that terminate in the small epicone of the cell. The longitudinal microtubular root of the flagellar apparatus is directed posteriorly and lies immediately beneath the theca but is distinct from the subthecal microtubule system. A narrow fibrous ridge is ventrally located to the cell's left between the exit apertures of the transverse and longitudinal flagella. In this position, the ventral ridge lies between and also connects with the anterior and posterior transverse microtubular bands. The ventral ridge is also associated with three microtubules that are distinct from other cytoskeletal microtubules. Our results demonstrate that the majority of sub-thecal microtubules originate from one of two microtubular bands associated with the cingulum. The possible role of the fibrous ventral ridge and its associated microtubules is also discussed.  相似文献   

12.
Each of four clones from the Synura petersenii complex was grown at different pHs (5.5, 6.5, 7.5, 8.5) in batch culture experiments. Growth response curves and exponential growth rates were compared among clones and pH treatments in order to examine growth trend variation among the clonal groups. The clones were isolated from geographically distant North American localities. The clonal groups represented distinct mating types, an isolate and its subisolate, and S. petersenii- and S. glabra-like scale morphologies. No consistent relationship existed between growth response curve, and culture medium pH. Additionally, the trends across time differed according to clone and pH combination. Pairwise comparisons of linear trends from transformed growth response curves indicated two distinct clonal associations. Although the clonal associations corresponded with the final cell density of the cultures, growth response curves did not correspond with mating type, the parent-isolate and subisolate, or scale morphology. Clones with glabra-like scales had greater growth rates than the clone with petersenii-like scales. The conflicting results generated from growth response curve and growth rate analyses support the concept that S. petersenii and S. glabra form a highly variable, homogeneous grouping.  相似文献   

13.
This paper presents results of field studies on the estuarine dinoflagellate Prorocentrum mariae-lebouriae (Parke & Ballantine) Faust in Chesapeake Bay. We tested the hypothesis that the photosynthetic physiology of Prorocentrum shows adaptive responses to low-light during a lengthy subpycnocline transport in estuarine circulation. Prorocentrum underwent a seasonal, northward trnasport between February and June, 1984 and 1985. Low cell densities occurred in the seaward part of the estuary during winter and early-spring, subpycnocline populations progressed up-estuary in the ensuring 2–3 months, and dense surface populations developed in the mesohaline portion of the estuary thereafter. We sampled Prorocentrum from surface and subpycnocline waters and measured photosynthesis-light (P-I) relations with in situ incubations. The photophysiology of Prorocentrum collected below the pycnoline differed from that of cells in the surface mixed layer in that photosynthetic efficiency, α-cell?1, was higher, photosynthetic capacity, Pmax-cell?1 was ·4 times greater for subpycnocline (≦ 10m) samples than for those from the surface mixed layer (≧ 6m). Comparison of in situ photosynthetic properties to those generated in laboratory studies showed that values of α·cell?1 for both surface and subpycnocline samples were in the range found for cultures in low-light. Concentrations of Chls a, c and peridinin·cell?1 and molar pigment ratios peridinin: Chl a and Chl a: Chl c were not significantly different for the surface and subpycnocline samples, nor were C · cell?1 or C : Chl a. Chloroplast and starch volume fractions and the number of thylakoids were the same for samples collected at different depths, and there was no evidence of cytoplasmic vacuolization in any field samples. These morphometric data for cells from natural populations of Prorocentrum most closely resembled data for laboratory cultures grown at or near 2.6E·m-?2·4d?1. A lower growth irradiance of 0.3E·m?2·d?1 produced indications of stress in cultures, including starch depletion and vacuolization, that were never observed in natural populations. Based on the combination of these findings, we conclude that Prorocentrum is adapted to low-light both in the surface mixed layer and beneath the pycnocline, although certain photophysiological characteristics distinguish these two groups of samples.  相似文献   

14.
Diatom oxylipins have been observed to deleteriously impact copepod reproductive success. However, field studies have revealed very variable and case‐dependent results. Therefore, the plasticity of diatom oxylipin metabolism was studied among four clones of the marine diatom Skeletonema marinoi Sarno et Zingone. Diatom oxylipin metabolism was studied by two lipoxygenase (LOX) activity assays carried out at different pH values and by oxylipin quantification. The four clones showed no major metabolic differences in terms of protein content or growth rate. However, two of the clones produced significantly higher levels of oxylipins than the other two. LOX activity measurements also indicated clonal variability in fatty acid oxidative metabolism. The presence of clone‐specific differences in oxylipin metabolism may play a role in shaping diatom population dynamics by conferring selective advantages to certain clones.  相似文献   

15.
The putatively toxic dinoflagellates Pseudopfiesteria shumwayae (Glasgow et J. M. Burkh.) Litaker, Steid., P. L. Mason, Shields et P. A. Tester and Pfiesteria piscicida Steid. et J. M. Burkh. have been implicated in massive fish kills and of having negative impacts on human health along the mid‐Atlantic seaboard of the USA. Considerable debate still remains as to the mechanisms responsible for fish mortality (toxicity vs. micropredation) caused by these dinoflagellates. Genetic differences among these cultures have not been adequately investigated and may account for or correlate with phenotypic variability among strains within each species. Genetic variation among strains of Ps. shumwayae and P. piscicida was examined by PCR–RFLP analysis using cultures obtained from the Provasoli‐Guillard National Center for Culture of Marine Phytoplankton (CCMP), as well as those from our own and other colleagues’ collection efforts. Examination of restriction digest banding profiles for 22 strains of Ps. shumwayae revealed the presence of 10 polymorphic restriction endonuclease sites within the first and second internal transcribed spacers (ITS1 and ITS2) and the 5.8S gene of the rDNA complex, and the cytochrome oxidase subunit I (COI) gene. Three compound genotypes were represented within the 22 Ps. shumwayae strains. Conversely, PCR–RFLP examination of 14 strains of P. piscicida at the same ITS1, 5.8S, and ITS2 regions revealed only one variable restriction endonuclease site, located in the ITS1 region. In addition, a dinoflagellate culture listed as P. piscicida (CCMP 1928) and analyzed as part of this study was identified as closely related to Luciella masanensis P. L. Mason, H. J. Jeong, Litaker, Reece et Steid.  相似文献   

16.
The cell division cycle in several pelagic dinoflagellate species has been shown to be phased with the diurnal cycle, suggesting that their cell cycle may be regulated by a circadian clock. In this study, we examined the cell cycle of an epibenthic dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo (Dinophyceae), and found that cell division was similarly phased to the diurnal cycle. Cell division occurred during a 3-h window beginning 6 h after the onset of the dark phase. Cell cycle progression in higher eukaryotes is regulated by a cell cycle regulatory protein complex consisting of cyclin and the cyclin-dependent kinase CDC2. In this report, we identified a CDC2-like kinase in G. toxicus that displays activity in vitro against a known substrate of CDC2 kinase, histone H1. As in higher eukaryotes, CDC2 kinase was expressed constitutively in G. toxicus throughout the cell cycle, but it was activated only late in the dark phase, concurrent with the presence of mitotic cells. These results indicate that cell division in G. toxicus is regulated by molecular controls similar to those found in higher eukaryotes.  相似文献   

17.
Observations of two distinct size classes with similar shape in natural populations of Dinophysis Ehrenberg were first reported by Jorgensen in 1923 and intermediate forms exhibiting a continuum between the typical vegetative cell and a putative small cell by Wood in 1954. Focused attention on Dinophysis spp. associated with diarrhetic shellfish intoxications in the last decade has provided new examples of small cells in the genus, sometimes with contours dissimilar from the corresponding vegetative cells; dimorphic individuals; and large/small cell couplets. This work was based on in situ observations during intensive sampling for cell cycle studies of Dinophysis acuminata Claparéde et Lachmann, Dinophysis acuta Ehrenberg, Dinophysis caudata Saville-Kent, and Dinophysis tripos Gourret; on laboratory incubations of D. acuminata; and on a thorough search of documented information on morphological variability of Dinophysis spp. During in situ division, most dividing cells exhibit a normal longitudinal fission, but some (1%–10%) undergo a “depauperating” fission, leading to pairs of dimorphic cells with dissimilar moieties. After separation and sulcal list regeneration, these dimorphic cells become D. skagii Paulsen, D. dens Pavillard, D. diegensis Kofoid, and D. diegensis Kofoid var. curvata-like individuals, which can also be observed forming couplets D. acuminata/D. skagii, D. acuta/D. dens, and D. caudata/D. diegensis attached by their ventral margins. Small cells can grow again to large size, as shown in laboratory incubations of D. acuminata, thus partly explaining observations of thecal intercalary bands, and intermediate forms. The sexual nature of the small cells will not be unequivocally demonstrated until controlled germination of the alleged cyst forms is achieved, and some intermediate forms may correspond to undescribed stages after cyst germination. These observations suggest common patterns in the life cycle of Dinophysis spp. Intraspecific morphological variability of Dinophysis spp. in a given geographic area can largely be attributed to small cell formation, as a response to changing environmental conditions, and may be a part of the sexual cycle of these species. Small cells seem to be able to enlarge, leading to intermediate cell and further vegetative cell formation as part of a three-looped life history pattern in Dinophysis.  相似文献   

18.
The ichthyotoxic dinoflagellate Pfiesteria piscicida Steidinger et Burkholder has a complex life cycle with several heterotrophic flagellated and amoeboid stages. A prevalent flagellated form, the nontoxic zoospore stage, has a proficient grazing ability, especially on cryptophyte prey. Although P. piscicida zoospores lack the genetic capability to synthesize chloroplasts, they can obtain functional chloroplasts from algal prey (i.e. kleptoplastidy), as demonstrated here with a cryptophyte prey. Zoospores grown with Rhodomonas sp. Karsten CCMP757 (Cryptophyceae) grazed the cryptophyte population to minimal densities. After placing the cultures in near darkness where cryptophyte recovery was restricted and further prey ingestion did not occur, the time-course patterns in growth, prey chloroplast content·zoospore−1, and prey nucleus content·zoospore−1 were followed. Ingested chloroplasts were selectively retained in the dinoflagellate, as indicated by the decline and, ultimately, near absence of cryptophyte nuclei in plastid-containing zoospores. Chloroplasts retained inside P. piscicida cells for at least a week were photosynthetically active, as indicated by starch accumulation and microscope-autoradiographic measurements of bicarbonate uptake. Recognition that P. piscicida can function as a phototroph broadens our perspective of the physiological ecology of the dinoflagellate because it suggests that, at least during part of its life cycle, P. piscicida 's growth and survival might be affected by photoregulation and nutritional control of photosynthesis.  相似文献   

19.
Microbial eukaryotes may extinguish much of their nuclear phylogenetic history due to endosymbiotic/horizontal gene transfer (E/HGT). We studied E/HGT in 32,110 contigs of expressed sequence tags (ESTs) from the dinoflagellate Alexandrium tamarense (Dinophyceae) using a conservative phylogenomic approach. The vast majority of predicted proteins (86.4%) in this alga are novel or dinoflagellate‐specific. We searched for putative homologs of these predicted proteins against a taxonomically broadly sampled protein database that includes all currently available data from algae and protists, and reconstructed a phylogeny from each of the putative homologous protein sets. Of the 2,523 resulting phylogenies, 14%–17% are potentially impacted by E/HGT involving both prokaryote and eukaryote lineages, with 2%–4% showing clear evidence of reticulate evolution. The complex evolutionary histories of the remaining proteins, many of which may also have been affected by E/HGT, cannot be interpreted using our approach with currently available gene data. We present empirical evidence of reticulate genome evolution that combined with inadequate or highly complex phylogenetic signal in many proteins may impede genome‐wide approaches to infer the tree of microbial eukaryotes.  相似文献   

20.
Benthic dinoflagellates of the genus Ostreopsis Schmidt are common in tropical and subtropical water, and some species produce toxins potentially involved in human intoxication events. A benthic bloom of Ostreopsis mascarenensis Quod was observed near Rodrigues Island during a survey of benthic dinoflagellates in the southwestern Indian Ocean. The morphology of O. mascarenensis was studied by LM and SEM. Preliminary screening of a crude extract of an O. mascarenensis bloom revealed neurotoxicity in mice similar to that induced by palytoxin. After partition of the crude extract, the highest toxicity was retained in the butanol‐soluble fraction, which retained hemolytic activity suggestive of palytoxin analogues. Two new toxins, mascarenotoxin‐A and ‐B, were resolved from this fraction by HPLC coupled to a diode array detector. The closed mass spectrum profile and fragmentation pattern obtained by advanced nano–electrospray ionization quadrupole time‐of‐flight mass spectrometry between purified toxins and a reference palytoxin confirmed the mascarenotoxins as palytoxin analogues. These results were confirmed by tandem mass spectrometry with the identification of specific fragment ion m/z 327. An on‐line liquid chromatography protocol coupled to tandem mass spectrometry was developed for detection of these palytoxin analogues. The present study describes the first purification, chemical, and toxicological characterization of new palytoxin analogues isolated from a benthic bloom of O. mascarenensis. These results suggest that O. mascarenensis, which is largely distributed in the southwestern Indian Ocean, could be a source of palytoxin poisoning in this tropical area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号