首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The evolution of plastic traits requires phenotypic trade-offs and heritable traits, yet the latter requirement has received little attention, especially for predator-induced traits. Using a half-sib design, I examined the narrow-sense heritability of predator-induced behaviour, morphology, and life history in larval wood frogs (Rana sylvatica). Many of the traits had significant additive genetic variation in predator (caged Anax longipes) and no-predator environments. Whereas most traits had moderate to high heritability across environments, tail depth exhibited high heritability with predators but low heritability without predators. In addition, several traits had significant heritability for plasticity, suggesting a potential for selection to act on plasticity per se. Genetic correlations confirmed known phenotypic relationships across environments and identified novel relationships within each environment. This appears to be the first investigation of narrow-sense heritabilities for predator-induced traits and confirms that inducible traits previously shown to be under selection also have a genetic basis and should be capable of exhibiting evolutionary responses.  相似文献   

3.
Population response to selection depends on the presence of additive genetic variance for traits under selection. When a population enters an alien environment, environment-induced changes in the expression of genetic variance may occur. These could have large effects on the response to selection. To investigate the environment-dependence of genetic variance, we conducted a reciprocal transplant experiment between two ecotypically differentiated populations of Impatiens pallida using the progeny of a standard mating design. The floodplain site was characterized by high water availability, moderate temperatures, and continuous dense stands of Impatiens. The hillside site was drier, with larger temperature extremes and supported only scattered patches of Impatiens with significantly lower seed production and earlier mortality. Estimates of heritability were low for each of the 13 traits measured in each population and site (range from 0–28%). Additive genetic variance for life-history traits tended to be larger than for morphological traits, but genetic variance in fitness was estimated to be not significantly different from zero in all cases. Significant heritability was detected in both populations for one trait (date of first cleistogamous flower) known to be closely related to fitness on the hillside. In general, heritability was reduced for populations when grown in the hillside site relative to the floodplain site, suggesting that stress acts to reduce the expression of genetic variance and the potential to respond to selection there. Consistent reductions in heritability associated with more stressful environments suggest that populations invading such sites may undergo little adaptive differentiation and be more prone to local extinction.  相似文献   

4.
Can a history of phenotypic plasticity increase the rate of adaptation to a new environment? Theory suggests it can be through two different mechanisms. Phenotypically plastic organisms can adapt rapidly to new environments through genetic assimilation, or the fluctuating environments that result in phenotypic plasticity can produce evolvable genetic architectures. In this article, I studied a model of a gene regulatory network that determined a phenotypic character in one population selected for phenotypic plasticity and a second population in a constant environment. A history of phenotypic plasticity increased the rate of adaptation in a new environment, but the amount of this increase was dependent on the strength of selection in the original environment. Phenotypic variance in the original environment predicted the adaptive capacity of the trait within, but not between, plastic and nonplastic populations. These results have implications for invasive species and ecological studies of rapid adaptation.  相似文献   

5.
How well populations can cope with global warming will often depend on the evolutionary potential and plasticity of their temperature-sensitive, fitness-relevant traits. In Bechstein's bats (Myotis bechsteinii), body size has increased over the last decades in response to warmer summers. If this trend continues it may threaten populations as larger females exhibit higher mortality. To assess the evolutionary potential of body size, we applied a Bayesian ‘animal model’ to estimate additive genetic variance, heritability and evolvability of body size, based on a 25-year pedigree of 332 wild females. Both heritability and additive genetic variance were reduced in hot summers compared to average and cold summers, while evolvability of body size was generally low. This suggests that the observed increase in body size was mostly driven by phenotypic plasticity. Thus, if warm summers continue to become more frequent, body size likely increases further and the resulting fitness loss could threaten populations.  相似文献   

6.
Quantitative genetics has been an immensely powerful tool in manipulating the phenotypes of domesticated plants and animals. Much of the predictive power of quantitative genetics depends on the breeder's control over the context in which phenotype and mating are being expressed. In the natural world, these contexts are often difficult to describe, let alone control. We are left, therefore, with a poor understanding of the limits of quantitative genetics in natural populations. One of the crucial contextual elements for assessing breeding value is the genetic background in which an individual's genes are being assessed. When interacting genes are polymorphic within a population, the degree of mating among relatives can influence the correlations among mates and the predictions of a response to selection. Population structure can strongly influence the degree to which dominance and epistasis influences additive genetic variance and heritability. The extent of inbreeding can also influence heritabilities through its effect on the environmental component of phenotypic variance. The applicability of standard quantitative genetic breeding designs to the measurement of heritabilities in natural populations therefore depends in part on: (1) the mating system of the population; and (2) the importance of gene interactions in determining phenotypic variation. We tested for an effect of mating structure on the partitioning of phenotypic variance and heritability by comparing two breeding designs in a common environment. Both breeding designs used 139 pollen parents taken from mapped locations in a population of Plantago lanceolata L., and crossed to 280 seed parents from the same population. One design was random-mating, the second was biased toward near-neighbor matings to an extent determined by field measure of pollen-mediated gene flow distances. The offspring were grown randomly mixed in a common garden. Nine traits were measured: central corm diameter, number of leaves, area of the most recently fully expanded leaf, density of hairs (cm-2) on the leaves, dry weight per unit leaf area, photosynthetic capacity, transpiration rates, water use efficiency, and reproductive dry weight. Heritabilities and variance components from the two designs were compared using randomization tests. None of the variance components or the heritabilities differed significantly between breeding designs at the 0.05 level. The test could distinguish differences between the heritabilities measured in the two breeding designs as small as 0.11, on average. Thus, for the degree of inbreeding normally exhibited in P. lanceolata there is insufficient gene interaction present within populations to influence the partitioning of variance between additive and nonadditive components or to influence heritability estimates to a meaningful extent. We suggest that for Plantago other sources of variation in heritability estimates, such as maternal effects and genotype × environment interactions, are more important influences than the interaction between inbreeding and gene interactions, and standard heritability estimate based on random breeding is as accurate as one taking the natural mating structure into account.  相似文献   

7.
The study of phenotypic plasticity, the ability of a given genotype to express different phenotypes as environments change, is becoming a central focus of ecological genetics and evolutionary theory. To help address the most pressing questions about plasticity (its genetic control, ecological relevance, and macroevolutionary consequences) we advocate the use of Arabidopsis thaliana (and eventually other related species of the same genus) as a model system. In this study we present experimental data concerning: (a) the extent of reaction norm variation to two levels of nutrients in a worldwide collection of 26 A. thaliana populations; and (b) the existence of multivariate associations among key phenotypic characters, and their reaction to changes in the environment. We found significant among-population genetic variation for eight of the nine traits measured, as well as plasticity in four traits. Five traits showed significant differences in genetic variation between the two environments. The multivariate association of the nine traits defines four major groups of covarying characters, each of which may be plastic or not, depending on the particular population. The use of populations that can be easily obtained by any researcher, because they are part of a worldwide collection, implies that it will be easy to build on our results during future investigations of phenotypic plasticity in this species.  相似文献   

8.
The phenotypic view of selection assumes that genetic responses can be predicted from selective forces and heritability — or in the classical quantitative genetic equation: R = h2S. However, data on selection in bird populations show that often no selection responses is found, despite consistent selective forces on phenotypes and significant heritable variation. Such discrepancies may arise due to the assumption that selection only acts on observed phenotypes. We derive a general selection equation that takes into account the possibility that some relevant (internal or external) traits are not measured. This equation shows that the classic equation applies if selection directly acts on the measured, phenotypic traits. This is not the case when, for instance, there are unknown internal genetic trade-offs, or unknown common environmental factors affecting both trait and fitness. In such cases, any relationship between phenotypic selection and genetic response is possible. Fortunately, the classical model can be tested by comparing phenotypic and genetic covariances between traits and fitness; an indication that important internal or external traits are missing can thus be obtained. Such an analysis was indeed found in the literature; for selection on fledging weight in Great Tits it yielded valuable extra information.  相似文献   

9.
Abstract The evolution of phenotypic plasticity requires that it is adaptive, genetically determined, and exhibits sufficient genetic variation. For the tropical butterfly Bicyclus anynana there is evidence that temperature-mediated plasticity in egg size is an adaptation to predictable seasonal change. Here we set out to investigate heritability in egg size and genetic variation in the plastic response to temperature in this species, using a half-sib breeding design. Egg size of individual females was first measured at a high temperature 4 days after eclosion. Females were then transferred to a low temperature and egg size was measured after acclimation periods of 6 and 12 days respectively. Overall, additive genetic variance explained only 3-11% of the total phenotypic variance, whereas maternal effects were more pronounced. Genotype-environment interactions and cross-environmental correlations of less than unity suggest that there is potential for short-term evolutionary change. Our findings strengthen the support for the adaptive nature of temperature-mediated plasticity in egg size.  相似文献   

10.
The distribution and proportion of the sexual species Rana lessonae to the hemiclonal hybrid R. esculenta among natural habitats suggests that these anurans may differ in adaptive abilities. I used a half-sib design to partition phenotypic and quantitative genetic variation in tadpole responses at two food levels into causal variance components. Rana lessonae displays strong phenotypic variation across food levels. Growth rate is strictly determined by environmental factors and includes weak maternal effects. Larval period and body size at metamorphosis both contain moderate levels of additive genetic variance. The sire x food interactions and the lack of environmental correlations indicate that adaptive phenotypic plasticity is present in both of these traits. In contrast, R. esculenta displays less phenotypic variation across food levels, especially for larval period. Variation in body size at metamorphosis is underlain by genetic variation as shown by high levels of additive genetic variance, yet growth rate and larval period are not. Significant environmental correlations between larval period at high food level and growth, larval period, and body size at low food, indicate phenotypic plasticity is absent. A positive phenotypic correlation between body size at metamorphosis and larval period for R. lessonae at both food levels suggests a trade-off between growing large and metamorphosing quickly to escape predation or pond drying. The lack of a similar correlation for R. esculenta at the high food level suggests it may be less constrained. Different levels of adaptive genetic variation among larval traits suggest that the sexual species and the hybridogenetic hemiclone differ in their abilities to cope with temporally and spatially heterogeneous environments.  相似文献   

11.
Adaptability depends on the presence of additive genetic variance for important traits. Yet few estimates of additive genetic variance and heritability are available for wild populations, particularly so for fishes. Here, we estimate heritability of length‐at‐age for wild‐living brown trout (Salmo trutta), based on long‐term mark‐recapture data and pedigree reconstruction based on large‐scale genotyping at 15 microsatellite loci. We also tested for the presence of maternal and paternal effects using a Bayesian version of the Animal model. Heritability varied between 0.16 and 0.31, with reasonable narrow confidence bands, and the total phenotypic variance increased with age. When introducing dam as an additional random effect (accounting for c. 7% of total phenotypic variance), the level of additive genetic variance and heritability decreased (0.12–0.21). Parental size (both for sires and for dams) positively influenced length‐at‐age for juvenile trout – either through direct parental effects or through genotype‐environment correlations. Length‐at‐age is a complex trait reflecting the effects of a number of physiological, behavioural and ecological processes. Our data show that fitness‐related traits such as length‐at‐age can retain high levels of additive genetic variance even when total phenotypic variance is high.  相似文献   

12.
Phenotypic plasticity can allow organisms to respond to environmental changes by producing better matching phenotypes without any genetic change. Because of this, plasticity is predicted to be a major mechanism by which a population can survive the initial stage of colonizing a novel environment. We tested this prediction by challenging wild Drosophila melanogaster with increasingly extreme larval environments and then examining expression of alcohol dehydrogenase (ADH) and its relationship to larval survival in the first generation of encountering a novel environment. We found that most families responded in the adaptive direction of increased ADH activity in higher alcohol environments and families with higher plasticity were also more likely to survive in the highest alcohol environment. Thus, plasticity of ADH activity was positively selected in the most extreme environment and was a key trait influencing fitness. Furthermore, there was significant heritability of ADH plasticity that can allow plasticity to evolve in subsequent generations after initial colonization. The adaptive value of plasticity, however, was only evident in the most extreme environment and had little impact on fitness in less extreme environments. The results provide one of the first direct tests of the adaptive role of phenotypic plasticity in colonizing a novel environment.  相似文献   

13.
Lacaze X  Hayes PM  Korol A 《Heredity》2009,102(2):163-173
Phenotypic plasticity is the variation in phenotypic traits produced by a genotype in different environments. In contrast, environmental canalization is defined as the insensitivity of a genotype's phenotype to variation in environments. Despite the extensive literature on the evolutionary significance and potential genetic mechanisms driving plasticity and canalization, few studies tried to unravel the genetic basis of this phenomenon. Using both simulations and real data from barley (Hordeum vulgare), we used QTL mapping to obtain insights into the genetics of phenotypic plasticity. We explored two ways of quantifying phenotypic plasticity, namely the phenotypic variance across environments and the Finlay-Wilkinson's regression slope. Each relates to a different concept of stability. Through QTL detection with real and simulated data, we show that each measure of plasticity detects specific types of plasticity QTL. Most of the plasticity QTLs were detected in the data set with the lowest number of environments. All plasticity QTL co-located with loci showing QTL x E interaction and there were no QTL that only affected plasticity. The number of environments that are considered and their homogeneity is a key to interpret the genetic control of phenotypic plasticity. Regulatory pathways of plasticity may vary from one set of environments to another due to unique features of each environment. Therefore, with an increasing number of environments, it may become impossible to detect a single 'consistent' regulatory pathway for all environments.  相似文献   

14.
Despite great interest in sexual selection, relatively little is known in detail about the genetic and environmental determinants of secondary sexual characters in natural populations. Such information is important for determining the way in which populations may respond to sexual selection. We report analyses of genetic and large-scale environmental components of phenotypic variation of two secondary sexual plumage characters (forehead and wing patch size) in the collared flycatcher Ficedula albicollis over a 22-year period. We found significant heritability for both characters but little genetic covariance between the two. We found a positive association between forehead patch size and a large-scale climatic index, the North Atlantic Oscillation (NAO) index, but not for wing patch. This pattern was observed in both cross-sectional and longitudinal data suggesting that the population response to NAO index can be explained as the result of phenotypic plasticity. Heritability of forehead patch size for old males, calculated under favorable conditions (NAO index > or = median), was greater than that under unfavorable conditions (NAO index < median). These changes occurred because there were opposing changes in additive genetic variance (VA) and residual variance (VR) under favorable and unfavorable conditions, with VA increasing and VR decreasing in good environments. However, no such effect was detected for young birds, or for wing patch size in either age class. In addition to these environmental effects on both phenotypic and genetic variances, we found evidence for a significant decrease of forehead patch size over time in older birds. This change appears to be caused by a change in the sign of viability selection on forehead patch size, which is associated with a decline in the breeding value of multiple breeders. Our data thus reveal complex patterns of environmental influence on the expression of secondary sexual characters, which may have important implications for understanding selection and evolution of these characters.  相似文献   

15.
Sperm‐competition success (SCS) is seen as centrally important for evolutionary change: superior fathers sire superior sons and thereby inherit the traits that make them superior. Additional hypotheses, that phenotypic plasticity in SCS and sperm ageing explain variation in paternity, are less considered. Even though various alleles have individually been shown to be correlated with variation in SCS, few studies have addressed the heritability, or evolvability, of overall SCS. Those studies that have addressed found low or no heritability and have not examined evolvability. They have further not excluded phenotypic plasticity, and temporal effects on SCS, despite their known dramatic effects on sperm function. In Drosophila melanogaster, we found that both standard components of sperm competition, sperm defence and sperm offence, showed nonsignificant heritability across several offspring cohorts. Instead, our analysis revealed, for the first time, the existence of phenotypic plasticity in SCS across an extreme environment (5% CO2), and an influence of sperm ageing. Evolvability of SCS was substantial for sperm defence but weak for sperm offence. Our results suggest that the paradigm of explaining evolution by sperm competition is more complex and will benefit from further experimental work on the heritability or evolvability of SCS, measuring phenotypic plasticity, and separating the effects of sperm competition and sperm ageing.  相似文献   

16.
Understanding the genetic mechanisms for the phenotypic plasticity and developmental instability of a quantitative trait has important implications for breeding and evolution. Two clonally replicated plantations of two 3-generation inbred pedigrees derived from the highly divergent species Populus trichocarpa and P. deltoides were used to examine the genetic control of macro- and micro-environmental sensitivities and their genetic relationships with the trait mean across two contrasting environments. For all stem-growth traits studied, the trait mean had a higher broad-sense heritability (H2) level than macroenvironmental sensitivity, both with much higher values than microenvironmental sensitivity. Genetic correlation analyses indicated that the trait mean was more or less independent of macro- or micro-environmental sensitivity in stem height. Thus, for this trait, the genetic difference in response to the two environments might be mainly due to epistasis between some regulatory loci for plasticity and loci for trait mean. However, for basal area and volume index, pleiotropic loci might be more important for their genetic differences between the two environments. No evidence was found to support Lerner’s (1954) homeostasis theory in which macro- or micro-environmental sensitivity is the inverse function of heterozygosity. Received: 8 March 1996 / Accepted: 31 May 1996  相似文献   

17.
Laboratory experiments on Drosophila have often demonstrated increased heritability for morphological and life‐history traits under environmental stress. We used parent–offspring comparisons to examine the impact of humidity levels on the heritability of a physiological trait, resistance to heat, measured as knockdown time at constant temperature. Drosophila melanogaster were reared under standard nonstressful conditions and heat‐shocked as adults at extreme high or low humidity. Mean knockdown time was decreased in the stressful dry environment, but there was a significant sex‐by‐treatment interaction: at low humidity, females were more heat resistant than males, whereas at high humidity, the situation was reversed. Phenotypic variability of knockdown time was also lower in the dry environment. The magnitude of genetic correlation between the sexes at high humidity indicated genetic variation for sexual dimorphism in heat resistance. Heritability estimates based on one‐parent–offspring regressions tended to be higher under desiccation stress, and this could be explained by decreased environmental variance of heat resistance at low humidity. There was no indication that the additive genetic variance and evolvability of heat resistance differed between the environments. The pattern of heritability estimates suggests that populations of D. melanogaster may have a greater potential for evolving higher thermal tolerance under arid conditions.  相似文献   

18.
Diversified bet‐hedging (DBH) by production of within‐genotype phenotypic variance may evolve to maximize fitness in stochastic environments. Bet‐hedging is generally associated with parental effects, but phenotypic variation may also develop throughout life via developmental instability (DI). This opens for the possibility of a within‐generation mechanism creating DBH during the lifetime of individuals. If so, DI could in fact be a plastic trait itself; if a fluctuating environment indicates uncertainty about future conditions, sensing such fluctuations could trigger DI as a DBH response. However, this possibility has received little empirical attention. Here, we test whether fluctuating environments may elicit such a response in the clonally reproducing crustacean Daphnia magna. Specifically, we exposed genetically identical individuals to two environments of different thermal stability (stable vs. pronounced daily realistic temperature fluctuations) and tested for effects on DI in body mass and metabolic rate shortly before maturation. Furthermore, we also estimated the genetic variation in DI. Interestingly, fluctuating temperatures did not affect body mass, but metabolic rate decreased. We found no evidence for plasticity in DI in response to environmental fluctuations. The lack of plasticity was common to all genotypes, and for both traits studied. However, we found considerable evolvability for DI, which implies a general evolutionary potential for DBH under selection for increased phenotypic variance.  相似文献   

19.
For continuously variable, polygenic characters, the response to selection depends upon the proportion of phenotypic variance that is caused by additive genetic variance, or narrow-sense heritability. Thus, a major goal of quantitative genetics is to partition phenotypic variance for a trait in a way that isolates additive genetic variance from other causes. The variance among paternal half-sib families, which is frequently used to estimate additive variance, is commonly recognized to include additive epistatic effects. However, this variance component can also include non-Mendelian paternal effects. We report here the results from a diallel crossing design used to isolate nonnuclear effects from the paternal nuclear contribution to disease resistance in the common morning glory, Ipomoea purpurea. In particular, we found that genetic variance for resistance to anthracnose, a disease caused by the fungal pathogen Colletotrichum dematium, was determined largely by a nonnuclear, additive paternal effect. We discuss potential mechanisms for this effect as well as some of their evolutionary implications.  相似文献   

20.
Plant phenotypic plasticity describes altered phenotypic performance of an individual when grown in different environments. Exploring genetic architecture underlying plant plasticity variation may help mitigate the detrimental effects of a rapidly changing climate on agriculture, but little research has been done in this area to date. In the present study, we established a population of 976 maize F1 hybrids by crossing 488 diverse inbred lines with two elite testers. Genome-wide association study identified hundreds of quantitative trait loci associated with phenotypic plasticity variation across diverse F1 hybrids, the majority of which contributed very little variance, in accordance with the polygenic nature of these traits. We identified several quantitative trait locus regions that may have been selected during the tropical-temperate adaptation process. We also observed heterosis in terms of phenotypic plasticity, in addition to the traditional genetic value differences measured between hybrid and inbred lines, and the pattern of which was affected by genetic background. Our results demonstrate a landscape of phenotypic plasticity in maize, which will aid in the understanding of its genetic architecture, its contribution to adaptation and heterosis, and how it may be exploited for future maize breeding in a rapidly changing environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号