首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salamanders in the family Plethodontidae show a unique behavior (nose-tapping) and have unique structures (nasolabial grooves) that may be used specifically to convey chemicals to the vomeronasal organ. The nasal structure of Plethodon cinereus was studied to determine if there is enhanced development of the vomeronasal organ compared with other salamander families that would correlate with use of these unique features. The vomeronasal organ in salamanders is found in a ventrolateral diverticulum of each main olfactory organ. P. cinereus has a more anteriorly placed vomeronasal organ within the diverticulum, and the posterior limit of each nasolabial groove is adjacent to the anterior limit of the vomeronasal organs. This suggests that the grooves deliver chemicals preferentially to the vomeronasal organs instead of to the main olfactory organs. In addition, the vomeronasal sensory epithelium is thickest anteriorly and is at its thinnest at about the level corresponding to the location of the vomeronasal organ in other salamander families. These adaptations suggest a specific mechanism of odorant delivery to the vomeronasal organ in plethodontid salamanders not found in other salamander families.  相似文献   

2.
Pheromonal communication is widespread in salamanders and newts and may also be important in some frogs and toads. Several amphibian pheromones have been behaviorally, biochemically and molecularly identified. These pheromones are typically peptides or proteins. Study of pheromone evolution in plethodontid salamanders has revealed that courtship pheromones have been subject to continual evolutionary change, perhaps as a result of co-evolution between the pheromonal ligand and its receptor. Pheromones are detected by the vomeronasal organ and main olfactory epithelium. Chemosensory neurons express vomeronasal receptors or olfactory receptors. Frogs have relatively large numbers of vomeronasal receptors that are transcribed in both the vomeronasal organ and the main olfactory epithelium. Salamander vomeronasal receptors apparently are restricted to the vomeronasal organ. To date, no chemosensory ligands have been matched to vomeronasal receptors or olfactory receptors so it is unknown whether particular receptor types are (1) specialized for detection of pheromones versus other chemosignals, or (2) specialized for detection of volatile, nonvolatile, or water-borne chemosignals. Despite progress in understanding amphibian pheromonal communication, only a small fraction of amphibian species have been examined. Study of additional species of amphibians will indicate which traits related to pheromonal communication are evolutionarily conserved and which traits have diverged over time.  相似文献   

3.
The structure of the olfactory organ in larvae and adults of the basal anuran Ascaphus truei was examined using light micrography, electron micrography, and resin casts of the nasal cavity. The larval olfactory organ consists of nonsensory anterior and posterior nasal tubes connected to a large, main olfactory cavity containing olfactory epithelium; the vomeronasal organ is a ventrolateral diverticulum of this cavity. A small patch of olfactory epithelium (the “epithelial band”) also is present in the preoral buccal cavity, anterolateral to the choana. The main olfactory epithelium and epithelial band have both microvillar and ciliated receptor cells, and both microvillar and ciliated supporting cells. The epithelial band also contains secretory ciliated supporting cells. The vomeronasal epithelium contains only microvillar receptor cells. After metamorphosis, the adult olfactory organ is divided into the three typical anuran olfactory chambers: the principal, middle, and inferior cavities. The anterior part of the principal cavity contains a “larval type” epithelium that has both microvillar and ciliated receptor cells and both microvillar and ciliated supporting cells, whereas the posterior part is lined with an “adult‐type” epithelium that has only ciliated receptor cells and microvillar supporting cells. The middle cavity is nonsensory. The vomeronasal epithelium of the inferior cavity resembles that of larvae but is distinguished by a novel type of microvillar cell. The presence of two distinct types of olfactory epithelium in the principal cavity of adult A. truei is unique among previously described anuran olfactory organs. A comparative review suggests that the anterior olfactory epithelium is homologous with the “recessus olfactorius” of other anurans and with the accessory nasal cavity of pipids and functions to detect water‐borne odorants. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Using histological techniques and computer‐aided three‐dimensional reconstructions of histological serial sections, we studied the development of the olfactory and vomeronasal organs in the discoglossid frog Discoglossus pictus. The olfactory epithelium in larval D. pictus represents one continuous unit of tissue not divided into two separate portions. However, a small pouch of olfactory epithelium (the “ventromedial diverticulum”) is embedded into the roof of the buccal cavity, anteromedial to the internal naris. The lateral appendix is present in D. pictus through the entire larval period and disappears during the onset of metamorphosis. The disappearance of the lateral appendix at this time suggests that it is a typical larval organ related to aquatic life. The vomeronasal organ develops during hindlimb development, which is comparatively late for anurans. The development of the vomeronasal organ in D. pictus follows the same general developmental pattern recognized for neobatrachians. As with most anurans, the vomeronasal glands appear later than the vomeronasal organ. After metamorphosis, the olfactory organ of adult D. pictus is composed of a series of three interconnected chambers: the cavum principale, cavum medium, and cavum inferius. We suggest that the ventromedial diverticulum at the anterior border of the internal naris of larval D. pictus might be homologous with the ventral olfactory epithelium of bufonids and with the similar diverticulum of Alytes. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
《Journal of morphology》2017,278(9):1208-1219
The anuran peripheral olfactory system is composed of a number of subsystems, represented by distinct neuroepithelia. These include the main olfactory epithelium and vomeronasal organ (found in most tetrapods) and three specialized epithelia of anurans: the buccal‐exposed olfactory epithelium of larvae, and the olfactory recess and middle chamber epithelium of postmetamorphic animals. To better characterize the developmental changes in these subsystems across the life cycle, morphometric changes of the nasal chemosensory organs during larval development and metamorphosis were analyzed in three different anuran species (Rhinella arenarum , Hypsiboas pulchellus , and Xenopus laevis ). We calculated the volume of the nasal chemosensory organs by measuring the neuroepithelial area from serial histological sections at four different stages. In larvae, the vomeronasal organ was relatively reduced in R. arenarum compared with the other two species; the buccal‐exposed olfactory epithelium was absent in X. laevis , and best developed in H. pulchellus . In postmetamorphic animals, the olfactory epithelium (air‐sensitive organ) was relatively bigger in terrestrial species (R. arenarum and H. pulchellus ), whereas the vomeronasal and the middle chamber epithelia (water‐sensitive organs) was best developed in X. laevis . A small olfactory recess (likely homologous with the middle chamber epithelium) was found in R. arenarum juveniles, but not in H. pulchellus . These results support the association of the vomeronasal and middle chamber epithelia with aquatic olfaction, as seen by their enhanced development in the secondarily aquatic juveniles of X. laevis . They also support a role for the larval buccal‐exposed olfactory epithelium in assessment of oral contents: it was absent in X. laevis , an obligate suspension feeder, while present in the two grazing species. These initial quantitative results give, for the first time, insight into the functional importance of the peripheral olfactory subsystems across the anuran life cycle.  相似文献   

6.
Abstract The vomeronasal organ in the frog, genus Rana, is composed of three interconnected cavities; superior, middle and inferior, which are separated from and anterior to the principal olfactory cavity. The superior cavity is found just underneath the external naris and forms a vestibule both for the principal olfactory organ and the vomeronasal organ. The vomeronasal sensory epithelium is located in the medial region of the inferior cavity and contains ciliated cells and microvillous receptor cells. Inspection of microscopic sections of frogs that had been swimming in fluorescent colorants revealed fluorescence on the surface of the vomeronasal organ, but not on that of the olfactory organ. Observations in vivo show that water enters via the external naris by two fissures, one on each side of the movable nasal lid, passes the middle cavity to flow via the sensory epithelium of the inferior cavity. The design of the frog nose makes it possible for this amphibious animal to sample the chemical composition of its environment; above water the frog can inhale air and expose its olfactory organ to volatile substances; in water the vomeronasal organ samples water-borne substances. These new findings are discussed in relation to the air/water interface and the position of the amphibians in the evolution of terrestrial vertebrates.  相似文献   

7.
8.
Jungblut, L.D., Pozzi, A.G. and Paz, D.A. 2010. Larval development and metamorphosis of the olfactory and vomeronasal organs in the toad Rhinella (Bufo) arenarum (Hensel, 1867). — Acta Zoologica (Stockholm) 92 : 305–315. The olfactory and the vomeronasal system are the two major chemosensory systems found in terrestrial vertebrates. Among tetrapods, amphibians are unique in having an aquatic larval stage, followed by metamorphosis to a terrestrial adult. In the present work, we studied the histological development of the olfactory and vomeronasal organ and associated multicellular glands of the toad Rhinella (Bufo) arenarum, from early poshatching larva to postmetamorphic toadlets. As in other bufonids, the olfactory epithelium of R. arenarum in larvae is divided into dorsal and ventral branches in the rostral and mid‐nasal regions. At metamorphic climax, the larval pattern changes drastically and the adult olfactory configuration develops. Bowman’s glands appear in the olfactory epithelium of R. arenarum at the onset of metamorphic climax. The vomeronasal epithelium develops early in larval development in R. arenarum, around the time of operculum development. Interestingly, a novel sensory epithelium develops in the floor of the principal chamber of R. arenarum at metamorphic climax. This novel sensory epithelium resembles larval sensory epithelium lacking Bowman’s glands, and suggests that these animals would be able to sense not only air‐borne, but also water‐borne odors during their adult terrestrial life.  相似文献   

9.
嗅感受器主要感知外界环境中化学信号分子.本文采用银染、NADPH-组化染色和电镜技术来观察黑斑侧褶蛙(Petophylax nigromaculatus)的嗅器和犁鼻器的功能差异及细胞组成.银染法可对嗅上皮和犁鼻上皮的细胞进行分类及区分.其中,支持细胞胞核深染成黑色,嗅细胞胞核银染为花斑状.细胞计数显示,犁鼻上皮的嗅神经细胞含量百分比显著高于嗅上皮.组化结果显示,黑斑侧褶蛙嗅上皮和犁鼻上皮对NADPH-d表达模式差异显著,前者表达明显高于后者.电镜结果显示,黑斑侧褶蛙嗅上皮和犁鼻上皮的支持细胞由两种类型的细胞组成,分别为纤毛型和颗粒型支持细胞.  相似文献   

10.
Sexual dimorphisms of the vomeronasal organ (VNO) and the accessory olfactory bulb (AOB) of the mandarin voleMicrotus mandarinus Milne-Edwards, 1871 and reed voleM. fortis Büchner, 1889 are reported for the first time in the present work. The thickness and length of the vomeronasal epithelium (VE) and the nuclear size of the receptor cells, the width and length of the granule cell zone, the width and length of the mitral cell zone, and the density of the mitral cells were surveyed. The thickness and length of the vomeronasal epithelium (VE), the length of the granule cell zone and the mitral cell zone, and the densities of mitral cells were significantly different between male and female reed voles. Male and female mandarin voles had no significant differences in any of these parameters. Polygamous reed voles had a greater degree of sexual dimorphism in VNO and AOB than did monogamous mandarin voles. The present results provide evidence to the hypothesis that the degree of sexual dimorphism may be related to the mating system.  相似文献   

11.
The morphology of both the main nasal cavity and the vomeronasal organ differs among species representing six families of caecilians. The main nasal cavity is either divided or undivided. The vomeronasal organ differs in position (mediolateral, lateral), size (large vomeronasal organ in the aquatic species), and shape (mediolateral extension, vomeronasal organ with a lateral rostral projection). The great amount of respiratory epithelium of the main nasal cavity, the large vomeronasal organ, and its extensive innervation in typhlonectids may reflect both phylogeny and habitat adaptation, for these taxa are secondarily aquatic or semiaquatic and have several concomitant morphological and physiological modifications. The vomeronasal organ is associated with the caecilian tentacle as the tentacular ducts open into it. This association is further evidence for the involvement of the caecilian tentacle in vomeronasal chemoperception and may represent the mechanism by which these animals smell though the main nasal cavity is closed during burrowing or swimming. Labelings of primary olfactory and vomeronasal projections by means of horseradish peroxidase reaction reveal that the pattern of vomeronasal projections is similar in Ichthyophis kohtaoensis, Dermophis mexicanus, and Typhlonectes natans, even though T. natans possess stronger vomeronasal projections relative to olfactory projections than I. kohtaoensis and D. mexicanus. However, there are differences with respect to the patterns of olfactory projections. The olfactory projection of I. kohtaoensis is characterized by many displaced glomeruli. T. natans has the smallest olfactory projection. The nervus terminalis is associated with the olfactory system as shown by selective labelings of olfactory projections. Six characters potentially useful for phylogenetic analysis emerge from this study of comparative morphology. The characters were subjected to analysis using PAUP to see (1) if any resolution occurred and (2) if any groups were distinguished, whether they corresponded to phylogenetic arrangements based on other morphological characters. The characters are too few to produce nested dichotomous sets for all cases, but they do support the two typhlonectid genera examined and Dermophis and Gymnopis as sister taxa discrete from other groups, and they show that species within genera cluster together.  相似文献   

12.
This study examined the gross morphology and ultrastructure of the olfactory organ of larvae, neotenic adults, and terrestrial adults of the Coastal Giant Salamander (Dicamptodon tenebrosus). The olfactory organ of all aquatic animals (larvae and neotenes) is similar in structure, forming a tube extending from the external naris to the choana. A nonsensory vestibule leads into the main olfactory cavity. The epithelium of the main olfactory cavity is thrown into a series of transverse valleys and ridges, with at least six dorsal and nine ventral valleys lined with olfactory epithelium, and separated by ridges of respiratory epithelium. The ridges enlarge with growth, forming large flaps extending into the lumen in neotenes. The vomeronasal organ is a diverticulum off the ventrolateral side of the main olfactory cavity. In terrestrial animals, by contrast, the vestibule has been lost. The main olfactory cavity has become much broader and dorsoventrally compressed. The prominent transverse ridges are lost, although small diagonal ridges of respiratory epithelium are found in the lateral region of the ventral olfactory epithelium. The posterior and posteromedial wall of the main olfactory cavity is composed of respiratory epithelium, in contrast to the olfactory epithelium found here in aquatic forms. The vomeronasal organ remains similar to that in large larvae, but is now connected to the mouth by a groove that extends back through the choana onto the palate. Bowman's glands are present in the main olfactory cavity at all stages, but are most abundant and best developed in terrestrial adults. They are lacking in the lateral olfactory epithelium of the main olfactory cavity. At the ultrastructural level, in aquatic animals receptor cells of the main olfactory cavity can have cilia, short microvilli, a mix of the two, or long microvilli. Supporting cells are of two types: secretory supporting cells with small, electron-dense secretory granules, and ciliated supporting cells. Receptor cells of the vomeronasal organ are exclusively microvillar, but supporting cells are secretory or ciliated, as in the main olfactory cavity. After metamorphosis two distinct types of sensory epithelium occur in the main olfactory cavity. The predominant epithelium, covering most of the roof and the medial part of the floor, is characterized by supporting cells with large, electron-lucent vesicles. The epithelium on the lateral floor of the main olfactory cavity, by contrast, resembles that of aquatic animals. Both types have both microvillar and ciliated receptor cells. No important changes are noted in cell types of the vomeronasal organ after metamorphosis. A literature survey suggests that some features of the metamorphic changes described here are characteristic of all salamanders, while others appear unique to D. tenebrosus.  相似文献   

13.
The vomeronasal organ (VNO) is a chemosensory structure of the nasal septum found in most tetrapods. Although potential behavioural correlates of VNO function have been shown in two of the three elephant species, its morphology in Loxodonta africana has not been studied. The development of the VNO and its associated structures in the African elephant are described in detail using serially sectioned material from fetal stages. The results show that many components of the VNO complex (e.g. neuroepithelium, receptor‐free epithelium, vomeronasal nerve, paravomeronasal ganglia, blood vessels, vomeronasal cartilage) are well developed even in a 154‐day‐old fetus, in which the VNO opens directly into the oral cavity with only a minute duct present. However, the vomeronasal glands and their ducts associated with the VNO were developed only in the 210‐day‐old fetus. Notably, in this fetus, the vomeronasal–nasopalatine duct system had acquired a pathway similar to that described in the adult Asian elephant; the VNOs open into the oral cavity via the large palatal parts of the nasopalatine ducts, which are lined by a stratified squamous epithelium. The paired palatal ducts initially coursed anteriorly at an angle of 45° from the oral recess and/or the oral cavity mucosa, and merged into the vomeronasal duct. This study confirms the unique characteristics of the elephant VNO, such as its large size, the folded epithelium of the VNO tube, and the dorsomedial position of the neuroepithelium. The palatal position and exclusive communication of the VNO with the oral cavity, as well as the partial reduction of the nasopalatine duct, might be related to the unique elephantid craniofacial morphogenesis, especially the enormous growth of the tusk region, and can be seen as autapomorphies.  相似文献   

14.
Cells infiltrating the nonsensory epithelium of the vomeronasal organ of virus-antibody-free rats exhibited surface immunoreactivity for 2-microglobulin and immunoglobulin (Ig) E. They were further characterized by using immunohistochemical techniques with antibodies to cell-specific markers or histochemical techniques for immunocytes with surface receptors for IgE. Localization of intracellular granules immunoreactive for lactoferrin and CD18, a leukocyte adhesion molecule, unequivocally identified these cells as neutrophils. The low number of IgA-and IgG-immunoreactive B lymphocytes, T lymphocytes, and accessory immunocytes in the vomeronasal organ as well as the rest of the nasal cavity confirmed the absence of infection. We hypothesize that the operation of the vomeronasal pump induces repeated episodes of transient focal ischemia followed by reperfusion, which results in release of neutrophil chemoattractants and modulation of adhesion factors that regulate the extravasation and migration of neutrophils into the nonsensory epithelium. The distribution of immunoreactivity for interleukin 8 suggests that it is not the primary neutrophil chemoattractant in this system while that of CD18 suggests its active involvement in neutrophil extravasation. In addition to their role in immune surveillance, neutrophils may stimulate ion/water secretion into the vomeronasal lumen, affecting the perireceptor processes regulating stimulus access and clearance from the sensory epithelium.  相似文献   

15.
16.
This article studies the morphological remodeling of olfactory organs in the fire salamander (Salamandridae, Caudata), from the larval stages of ontogeny to the adult and throughout the course of the annual cycle. The fire salamander exhibits adaptations to the aquatic environment during premetamorphic life and terrestrial adaptations after metamorphosis. During adulthood, the annual activity of this species is divided into three seasonal periods: a breeding period, a nonbreeding period, and hibernation. We observed significant differences in morphology of olfactory organs between developmental stages as well as between each period within the annual cycle. For the first time in caudates, we examined the morphology of olfactory organs during the winter period (wintering larvae, hibernating adults). The results show that the remodeling of olfactory organs during the life of the fire salamander occurs both on macro- and micromorphological levels. Macromorphological ontogenetic variability includes the shape of the main olfactory chamber (MOC) and the distribution of olfactory epithelium (OE) in the MOC and in the vomeronasal organ (VNO). In larvae, the vomeronasal epithelium (VNE) is in a separate cavity, while in the post-metamorphic stages of ontogeny, the VNE occurs in the diverticulum of the MOC. In adult fire salamanders, both olfactory organs are most developed during the breeding season and reduced during hibernation. The VNE and OE in the MOC are also reduced during hibernation. Micro-morphological changes included different types/subtypes of olfactory receptor neurons (ORNs) in the OE in particular stages of ontogeny and periods within the annual cycle, for example, ciliate ORNs are present in the VNE only in the larval stages and giant ORNs occur only in nonbreeding adults. Also, there was a variable set of types of olfactory supporting cells in the VNO of the fire salamander during pre- and postmetamorphic life stages.  相似文献   

17.
Chemosensory cues play an important role in the daily lives of salamanders, mediating foraging, conspecific recognition, and territorial advertising. We investigated the behavioral effects of conspecific whole-body odorants in axolotls, Ambystoma mexicanum, a salamander species that is fully aquatic. We found that males increased general activity when exposed to female odorants, but that activity levels in females were not affected by conspecific odorants. Although males showed no difference in courtship displays across testing conditions, females performed courtship displays only in response to male odorants. We also found that electro-olfactogram responses from the olfactory and vomeronasal epithelia were larger in response to whole-body odorants from the opposite sex than from the same sex. In males, odorants from gravid and recently spawned females evoked different electro-olfactogram responses at some locations in the olfactory and vomeronasal epithelia; in general, however, few consistent differences between the olfactory and vomeronasal epithelia were observed. Finally, post hoc analyses indicate that experience with opposite-sex conspecifics affects some behavioral and electrophysiological responses. Overall, our data indicate that chemical cues from conspecifics affect general activity and courtship behavior in axolotls, and that both the olfactory and vomeronasal systems may be involved in discriminating the sex and reproductive condition of conspecifics.Abbreviations EOG electro-olfactogram - VNO vomeronasal organ  相似文献   

18.
The accessory olfactory system contributes to the perception of chemical stimuli in the environment. This review summarizes the structure of the accessory olfactory system, the stimuli that activate it, and the responses elicited in the receptor cells and in the brain. The accessory olfactory system consists of a sensory organ, the vomeronasal organ, and its central projection areas: the accessory olfactory bulb, which is connected to the amygdala and hypothalamus, and also to the cortex. In the vomeronasal organ, several receptors—in contrast to the main olfactory receptors—are sensitive to volatile or nonvolatile molecules. In a similar manner to the main olfactory epithelium, the vomeronasal organ is sensitive to common odorants and pheromones. Each accessory olfactory bulb receives input from the ipsilateral vomeronasal organ, but its activity is modulated by centrifugal projections arising from other brain areas. The processing of vomeronasal stimuli in the amygdala involves contributions from the main olfactory system, and results in long-lasting responses that may be related to the activation of the hypothalamic–hypophyseal axis over a prolonged timeframe. Different brain areas receive inputs from both the main and the accessory olfactory systems, possibly merging the stimulation of the two sensory organs to originate a more complex and integrated chemosensory perception.  相似文献   

19.
Most vertebrates have two olfactory organs, the olfactory epithelium (OE) and the vomeronasal organ. African clawed frog, Xenopus laevis, which spends their entire life in water, have three types of olfactory sensory epithelia: the OE, the middle chamber epithelium (MCE) and the vomeronasal epithelium (VNE). The axons from these epithelia project to the dorsal part of the main olfactory bulb (d-MOB), the ventral part of the MOB (v-MOB) and the accessory olfactory bulb, respectively. In the MCE, which is thought to function in water, two types of receptor neurons (RNs) are intermingled and express one of two types of G-proteins, Golf and Go, respectively. However, axonal projections from these RNs to the v-MOB are not fully understood. In this study, we examined the expression of G-proteins by immunohistochemistry to reveal the projection pattern of olfactory RNs of Xenopus laevis, especially those in the MCE. The somata of Golf- and Go-positive RNs were separately situated in the upper and lower layers of the MCE. The former were equipped with cilia and the latter with microvilli on their apical surface. These RNs are suggested to project to the rostromedial and the caudolateral regions of the v-MOB, respectively. Such segregation patterns observed in the MCE and v-MOB are also present in the OE and olfactory bulbs of most bony fish. Thus, Xenopus laevis is a very interesting model to understand the evolution of vertebrate olfactory systems because they have a primitive, fish-type olfactory system in addition to the mammalian-type olfactory system.  相似文献   

20.
Nearly all vertebrates possess an olfactory organ but the vomeronasal organ is a synapomorphy for tetrapods. Nevertheless, it has been lost in several groups of tetrapods, including aquatic and marine animals. The present study examines the development of the olfactory and vomeronasal organs in two terrestrial anurans that exhibit different developmental modes. This study compares the development of the olfactory and vomeronasal organs in metamorphic anurans that exhibit an aquatic larva (Bufo americanus) and directly developing anurans that have eliminated the tadpole (Eleutherodactylus coqui). The olfactory epithelium in larval B. americanus is divided into dorsal and ventral branches in the rostral and mid-nasal regions. The larval olfactory pattern in E. coqui has been eliminated. Ontogeny of the olfactory system in E. coqui embryos starts to vary substantially from the larval pattern around the time of operculum development, the temporal period when the larval stage is hypothesized to have been eliminated. The nasal anatomy of the two frogs does not appear morphologically similar until the late stages of embryogenesis in E. coqui and the terminal portion of metamorphosis in B. americanus. Both species and their respective developing offspring, aquatic tadpoles and terrestrial egg/embryos, possess a vomeronasal organ. The vomeronasal organ develops at mid-embryogenesis in E. coqui and during the middle of the larval period in B. americanus, which is relatively late for neobatrachians. Development of the vomeronasal organ in both frogs is linked to the developmental pattern of the olfactory system. This study supports the hypothesis that the most recent common ancestor of tetrapods possessed a vomeronasal organ and was aquatic, and that the vomeronasal organ was retained in the Amphibia, but lost in some other groups of tetrapods, including aquatic and marine animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号