首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Hyperactivated motility was studied in guinea pig spermatozoa. In the presence of the local anesthetic procaine, a high number of sperm cells (64%) showed hyperactivation when incubated in minimal culture medium with pyruvate, lactate, and glucose. Hyperactivated motility was dependent on glucose in the medium. Sperm ATP concentration was increased twofold in hyperactivated sperm when compared to procaine-treated nonhyperactivated cells. cAMP levels were also higher in hyperactivated cells than in control spermatozoa. Thus, in living spermatozoa high levels of ATP appear to be needed to generate hyperactivation. cAMP is present at a high concentration in hyperactivated spermatozoa, therefore a role of cAMP in hyperactivation cannot be excluded. Depletion of external Ca2+ did not inhibit procaine-induced hyperactivated motility. Hence, procaine canceled the requirement of external Ca2+ for sperm to express hyperactivated motility. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Protein tyrosine phosphorylation is a key event accompanying sperm capacitation. Although this signaling cascade generates an array of tyrosine-phosphorylated polypeptides, their molecular characterization is still limited. It is necessary to differentiate the localization of the tyrosine-phosphorylated proteins in spermatozoa to understand the link between the different phosphorylated proteins and the corresponding regulated sperm function. cAMP plays a pivotal role in the regulation of tyrosine phosphorylation. The intracellular cAMP levels were raised in goat spermatozoa by the addition of the phosphodiesterase inhibitor, IBMX in conjugation with caffeine. Tyrosine phosphorylation was significantly up-regulated following treatment with these two reagents. Treatment of caudal spermatozoa with IBMX and caffeine, time dependent up-regulated phosphorylation of the protein of molecular weights 50 and 200 kDa was observed. Increased phosphorylation was observed with a combination of IBMX and caffeine treatment. Tyrosine phosphorylation in caput spermatozoa was not affected significantly under these conditions. The expression level of tyrosine kinase in sperm was examined with specific inhibitors and with anti-phosphotyrosine antibody. The indirect immunofluorescence staining was carried out on ethanol permeabilized sperm using anti-phosphotyrosine antibody. Western blot analysis was done using two separate PKA antibodies: anti-PKA catalytic and anti-PKA RIα. Almost no difference was found in the intracellular presence of the PKA RIα and RIIα subunits in caput and caudal epididymal spermatozoa. However, the catalytic subunit seemed to be present in higher amount in caudal spermatozoa. The results show that caprine sperm displays an enhancement of phosphorylation in the tyrosine residues of specific proteins under in vitro capacitation conditions.  相似文献   

3.
Control is exerted on the movement of mammalian spermatozoa at ejaculation and at capacitation. Here the activation of motility in motionless pre-ejaculated sperm was investigated. This was done by isolating quiescent caudal epididymal sperm from the hamster and observing that the addition of either calcium cAMP, cGMP, or cUMP conferred full motility upon them. Other salts, nucleotides, caffeine, sugars, or oxygen did not. Epididymal fluid which contains phosphodiesterase had too little calcium to activate the sperm while seminal plasma had more than enough. The cAMP content of quiescent sperm was low, but ATP levels were high. At the activation of motility, sperm cAMP synthesis became very rapid. It thus appears that sperm are quiescent on the male because they lack cAMP, and that calcium, supplied at ejaculation, initiates rapid cAMP synthesis to produce motility.  相似文献   

4.
We previously demonstrated that male mice deficient in the soluble adenylyl cyclase (sAC) are sterile and produce spermatozoa with deficits in progressive motility and are unable to fertilize zona-intact eggs. Here, analyses of sAC(-/-) spermatozoa provide additional insights into the functions linked to cAMP signaling. Adenylyl cyclase activity and cAMP content are greatly diminished in crude preparations of sAC(-/-) spermatozoa and are undetectable after sperm purification. HCO(3)(-) is unable to rapidly accelerate the flagellar beat or facilitate evoked Ca(2+) entry into sAC(-/-) spermatozoa. Moreover, the delayed HCO(3)(-)-dependent increases in protein tyrosine phosphorylation and hyperactivated motility, which occur late in capacitation of wild-type spermatozoa, do not develop in sAC(-/-) spermatozoa. However, sAC(-/-) sperm fertilize zona-free oocytes, indicating that gamete fusion does not require sAC. Although ATP levels are significantly reduced in sAC(-/-) sperm, cAMP-AM ester increases flagellar beat frequency, progressive motility, and alters the pattern of tyrosine phosphorylated proteins. These results indicate that sAC and cAMP coordinate cellular energy balance in wild-type sperm and that the ATP generating machinery is not operating normally in sAC(-/-) spermatozoa. These findings demonstrate that sAC plays a critical role in cAMP signaling in spermatozoa and that defective cAMP production prevents engagement of multiple components of capacitation resulting in male infertility.  相似文献   

5.
Although Ca(2+) is of fundamental importance in mammalian sperm capacitation, its downstream targets have not been definitively demonstrated. The purpose of this study was to use the calmodulin (CaM) antagonists W7 and calmidazolium (CZ) to investigate the possible role of CaM, a Ca(2+)-specific binding protein, in capacitation. Sperm membrane changes associated with capacitation were assessed by the B pattern after chlortetracycline staining and by the ability to undergo the acrosome reaction (AR) in response to lysophosphatidylcholine (LPC). The percentage of B pattern sperm was significantly inhibited by W7 or CZ in a concentration-dependent manner. At 100 microM W7 or 10 microM CZ, these inhibitors also significantly reduced the sperm's ability to undergo the LPC-induced AR. Inhibition of the B pattern and the LPC-induced AR was overcome by exogenous cAMP analogues. Treatment of the sperm with 100 microM W7 also resulted in a significant decrease in their ability to fertilize eggs in vitro. At 100 microM, W5, a less potent dechlorinated W7 analogue, had no effect on the B pattern, LPC-induced AR, or fertilization competence. Sperm viability and protein tyrosine phosphorylation were not substantially affected by 100 microM W7 (relative to 100 microM W5) or 10 microM CZ; however, the percentages of motile and hyperactivated sperm were significantly reduced. The antagonist-inhibited sperm motility was restored by dilution in control medium, but not by cAMP analogues. These results suggest that CaM participates in the regulation of membrane changes important for mouse sperm capacitation, at a point upstream from cAMP, and that this pathway is at least partially separable from pathways controlling tyrosine phosphorylation and hyperactivation.  相似文献   

6.
This study was undertaken to determine the role of calcium ion, a key regulator of the intensity and form of motility in mature demembranated sperm, in the development of motility during passage through the bovine epididymis. Cellular calcium levels in bovine caput and cauda epididymal spermatozoa were measured with three different techniques. 45Ca2+ uptake measurements revealed that net calcium uptake and Ca2(+)-Ca2+ exchange in caput spermatozoa were about 2 to 3 times higher than in caudal spermatozoa. Intracellular free calcium determination with the calcium fluorophore Fura 2 showed that the levels were 6 times higher in caput spermatozoa. The values for caput and caudal sperm were 875 +/- 55 nM (n = 15) and 155 +/- 6 nM (n = 24), respectively. Total cellular calcium levels quantitated by atomic absorption were 626 +/- 30 (n = 48) and 304 +/- 19 (n = 46) ng/10(8) sperm in caput and caudal epididymal sperm, respectively. At least one of the reasons for the high calcium content of caput epididymal sperm is the result of a higher rate and extent of mitochondrial calcium accumulation in caput compared to caudal sperm. Mitochondrial calcium uptake rates measured in digitonin permeabilized cells revealed uptake rates 2- to 3-fold higher in caput compared to caudal sperm. However, mitochondrial calcium efflux rates were identical in caput and caudal epididymal sperm. The efflux rates in both cell types were unaffected by external sodium levels but were found to be proportional to pH. Alkalinization or acidification of internal pH of intact sperm resulted in a corresponding lowering or elevation of cytoplasmic free calcium levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In mammalian spermatozoa, the state of protein tyrosine phosphorylation is modulated by protein tyrosine kinases and protein tyrosine phosphatases that are controlled via cyclic AMP (cAMP)‐protein kinase A (PKA) signaling cascades. The aims of this study were to examine the involvement of cAMP‐induced protein tyrosine phosphorylation in response to extracellular calcium and to characterize effects of pharmacological modulation of the cAMP‐induced protein phosphorylation state and calmodulin activity during hyperactivation in boar spermatozoa. Ejaculated spermatozoa were incubated with cBiMPS (a cell‐permeable cAMP analog) and CaCl2 at 38.5°C to induce hyperactivation, and then used for Western blotting and indirect immunofluorescence of phosphorylated proteins and for the assessment of motility. Both cBiMPS and CaCl2 were necessary for hyperactivation. The increase in hyperactivated spermatozoa exhibited a dependence on the state of cBiMPS‐induced protein tyrosine phosphorylation in the connecting and principal pieces. The addition of calyculin A (an inhibitor for protein phosphatases 1/2A (PP1/PP2A), 50–100 nM) coincidently promoted hyperactivation and cAMP‐induced protein tyrosine phosphorylation in the presence of cBiMPS and CaCl2. Moreover, the addition of W‐7 (a calmodulin antagonist, 2–4 µM) enhanced the percentages of hyperactivated spermatozoa after incubation with cBiMPS and CaCl2, independently of protein tyrosine phosphorylation. These findings indicate that cAMP‐induced protein tyrosine phosphorylation in the connecting and principal pieces is involved in hyperactivation in response to extracellular calcium, and that calmodulin may suppress hyperactivation via the signaling cascades that are independent of cAMP‐induced protein tyrosine phosphorylation. Mol. Reprod. Dev. 79: 727–739, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
As mammalian spermatozoa migrate through the epididymis, they acquire functionality characterized by the potential to express coordinated movement and the competence to undergo capacitation. The mechanisms by which spermatozoa gain the ability to capacitate during epididymal transit are poorly understood. The purpose of this study was to investigate the impact of epididymal maturation on the signal transduction pathways regulating tyrosine phosphorylation, because this process is thought to be central to the attainment of a capacitated state and expression of hyperactivated motility. Western blot and immunocytochemical analyses demonstrated that epididymal maturation in vivo is associated with a progressive loss of phosphotyrosine residues from the sperm head. As cells pass from the caput to the cauda epididymis, tyrosine phosphorylation becomes confined to a narrow band at the posterior margin of the acrosomal vesicle. Epididymal maturation of rat spermatozoa was also associated with an acquired competence to respond to high levels of intracellular cAMP by phosphorylating tyrosine residues on the sperm tail. Immature caput spermatozoa were incapable of exhibiting this response, despite the apparent availability of cAMP and protein kinase A. These findings help to clarify the biochemical changes associated with the functional maturation of spermatozoa during epididymal transit.  相似文献   

9.
Bicarbonate ion, the local anesthetics procaine and dibucaine, and the ionophores monensin and nigericin have been shown to markedly increase the ability of agents that elevate cyclic adenosine monophosphate (cAMP) levels to initiate motility in bovine caput spermatozoa. A number of other weak bases, including theophylline, D-600 and dipyridamole, elevate cAMP levels maximally in caput sperm at low levels but induce motility only at high levels. These compounds thus appear to have a dual role in the initiation of motility, i.e., they elevate both cAMP levels and internal pH. Confirmation of this view was provided by the demonstration that bicarbonate ion and procaine permit initiation of motility by theophylline, D-600 and dipyridamole at markedly reduced levels. Also, forskolin (a neutral adenylate cyclase activator) elevates cyclic AMP levels in caput sperm but initiates motility only in the presence of bicarbonate or procaine, and the membrane-permeant cAMP analogue 8-bromo-cAMP is capable of inducing motility only in the presence of bicarbonate. Thus, motility in caput sperm is induced only under conditions that elevate both intracellular cAMP and pH, whereas caudal sperm motility is stimulated by an elevation of either cAMP or pH. These data suggest that the epididymal development of motility requires a maturational increase in internal pH. This suggestion was confirmed by direct measurement of the internal pH of caput and caudal sperm; the internal pH of the former was found to be 5.84 +/- 0.1 and the latter 6.27 +/- 0.05.  相似文献   

10.
The role of cyclic nucleotides in sperm capacitation is equivocal. Using conditions known to support mouse sperm capacitation after 120 min incubation in vitro, the cAMP and cGMP contents of epididymal spermatozoa were measured and the cGMP/cAMP ratio determined. The initial high cAMP content detected upon release of spermatozoa decreased within 30 min to a lower plateau, which was then maintained throughout incubation. With the cGMP content remaining approximately constant, the cGMP/cAMP ratio increased over 120 min. In the presence of 2 mM caffeine, an increased cAMP content was noted at 0 and 30 min before a fall to the plateau level. To investigate cyclic nucleotide metabolism, adenylate cyclase and phosphodiesterase activities were compared in two sperm populations, one essentially uncapacitated and the other incubated for 120 min. Adenylate cyclase activity, higher in the presence of 2 mM Mn2+ compared to Mg2+, showed increased activity at 120 min compared to 30 min incubation, while phosphodiesterase activity decreased during this period. The ability of spermatozoa to form adenosine and inosine from cAMP indicated endogenous 5′-nucleotidase and deaminase, as well as phosphodiesterase, activities. Although the endogenous cAMP content appeared to remain constant during the time that acrosome loss, hyperactivated motility and fertilizing ability can be demonstrated, activities of the enzymes responsible for cAMP metabolism indicate an increased potential for cAMP availability and turnover. The increased cGMP/cAMP ratio may also play a role during capacitation.  相似文献   

11.
Mammalian spermatozoa acquire functionality during epididymal maturation, and the ability to penetrate and fertilize the oocyte during capacitation. The aim of this study was to assess the effects of epididymal maturation, ejaculation and in vitro capacitation on sperm viability, acrosome integrity, mitochondrial activity, membrane fluidity, and calcium influx, both as indicators of capacitation status and sperm motility. Results indicated that boar spermatozoa acquired the ability to move in the epididymal corpus; however, their motility was not linear until the ejaculation. Epididymal spermatozoa showed low membrane fluidity and intracellular calcium content; ejaculation led to an increased calcium content, while membrane fluidity showed no changes. Acrosome integrity remained constant throughout the epididymal duct and after ejaculation and in vitro capacitation. The frequency of viable spermatozoa with intact mitochondrial sheath was higher in caput and ejaculated samples than in corpus and cauda samples, whereas the frequency of spermatozoa with high membrane potential was significantly lower in cauda samples. In vitro capacitation resulted in a decreased frequency of viable spermatozoa with intact mitochondrial sheath and an increased frequency of spermatozoa with high membrane potential in ejaculated samples. These results indicated that both epididymal maturation and ejaculation are key events for further capacitation, because only ejaculated spermatozoa are capable of undergoing the set of changes leading to capacitation.  相似文献   

12.
Digital image analysis of the flagellar movements of cynomolgus macaque spermatozoa hyperactivated by caffeine and cAMP was carried out to understand the change in flagellar movements during hyperactivation. The degree of flagellar bending increased remarkably after hyperactivation, especially at the base of the midpiece. Mainly two beating patterns were seen in the hyperactivated monkey sperm flagella: remarkably asymmetrical flagellar bends of large amplitude and relatively symmetrical flagellar bends of large amplitude. The asymmetrical bends were often seen in the early stage of hyperactivation, whereas the symmetrical bends executed nonprogressive, figure-of-eight movement. Beat frequency of the hyperactivated spermatozoa significantly decreased while wavelength of flagellar waves roughly doubled. To determine the conditions under which the axonemes of hyperactivated sperm flagella have asymmetrical or symmetrical bends, the plasma membranes of monkey spermatozoa were extracted with Triton X-100 and motility was reactivated with MgATP(2-) under various conditions. The asymmetrical flagellar bends were brought about by Ca(2+), whereas the symmetrical flagellar bends resulted from low levels of Ca(2+) and high levels of cAMP. Under these conditions, beat frequency and wavelength of flagellar waves of demembranated, reactivated spermatozoa were similar to those of the hyperactivated spermatozoa. These results suggest that during hyperactivation of monkey spermatozoa intracellular Ca(2+) concentrations first rise, and then decrease while cAMP concentrations increase simultaneously.  相似文献   

13.
Capacitation has been correlated with the activation of a cAMP-PKA-dependent signaling pathway leading to protein tyrosine phosphorylation. The ability to exhibit this response to cAMP matures during epididymal maturation in concert with the ability of the spermatozoa to capacitate. In this study, we have addressed the mechanisms by which spermatozoa gain the potential to activate this signaling pathway during epididymal maturation. In a modified Tyrode's medium containing 1.7 mM calcium, caput spermatozoa had significantly higher [Ca2+]i than caudal cells and could not tyrosine phosphorylate in response to cAMP. However, in calcium-depleted medium both caput and caudal cells could exhibit a cAMP-dependent phosphorylation response. The inhibitory effect of calcium on tyrosine phosphorylation was also observed in caudal spermatozoa using thapsigargin, a Ca(2+)-ATPase inhibitor that increased [Ca2+]i and precipitated a corresponding decrease in phosphotyrosine expression. We also demonstrate that despite the activation of tyrosine phosphorylation in caput spermatozoa, these cells remain nonfunctional in terms of motility, sperm-egg recognition and acrosomal exocytosis. These results demonstrate that the signaling pathway leading to tyrosine phosphorylation in mouse spermatozoa is negatively regulated by [Ca2+]i, and that maturation mechanisms that control [Ca2+]i within the spermatozoon are critically important during epididymal transit.  相似文献   

14.
Hyperactivated sperm motility is characterized by high-amplitude and asymmetrical flagellar beating that assists sperm in penetrating the oocyte zona pellucida. Other functional changes in sperm, such as activation of motility and capacitation, involve cross talk between the cAMP/PKA and tyrosine kinase/phosphatase signaling pathways. Our objective was to determine the role of the cAMP/protein kinase A (PKA) signaling pathway in hyperactivation. Western blot analyses of detergent extracts of whole sperm and flagella were performed using antiphosphotyrosine antibody. Bull sperm capacitated by 10 microg/ml heparin and/or 1 mM dibutyryl-cAMP plus 100 microM 3-isobutyl-1-methylxanthine exhibited increased protein tyrosine phosphorylation without becoming hyperactivated. Procaine (5 mM) or caffeine (10 mM) immediately induced hyperactivation in nearly 100% of motile sperm but did not increase protein tyrosine phosphorylation. After 4 h of incubation with caffeine, sperm expressed capacitation-associated protein tyrosine phosphorylation but hyperactivation was significantly reduced. Sperm initially hyperactivated by procaine or caffeine remained hyperactivated for at least 4 h in the presence of Rp-cAMPS (cAMP antagonist) or PKA inhibitors H-89 or H-8. Pretreatment with inhibitors also failed to block induction of hyperactivation; however, the inhibitors did block protein tyrosine phosphorylation when sperm were incubated with capacitating agents, thereby verifying inhibition of the cAMP/PKA pathway. While induction of hyperactivation did not depend on cAMP/PKA, it did require extracellular Ca(2+). These findings indicate that hyperactivation is mediated by a Ca(2+) signaling pathway that is separate or divergent from the pathway associated with acquisition of acrosomal responsiveness and does not involve protein tyrosine phosphorylation downstream of the actions of procaine or caffeine.  相似文献   

15.
Progressive motility was induced in hamster caput epididymal spermatozoa incubated in Tyrodes medium containing 50 mM theophylline, 1.0% Fraction V bovine serum albumin, and 15% (v/v) heat-treated human seminal plasma. Under these induction conditions, however, the maximum percent of caput spermatozoa exhibiting progressive motility (21%) and the time during which motility was sustained (120 min) were significantly less (p less than 0.05) than that of controls from the cauda epididymidis. Moreover, in contrast to caudal spermatozoa, the majority of the induced caput spermatozoa exhibited some degree of flagellar bending at the neck or midpiece. In subsequent experiments the procedure for motility induction was modified to achieve levels of motility in caput spermatozoa equivalent to those observed for caudal spermatozoa. The addition of 5 microM diamide, a sulfhydryl oxidant, to the induction medium prevented the flagellar angularity observed in induced caput sperm preparations. The percentage of caput spermatozoa induced to progressive motility was increased to levels characteristic of caudal spermatozoa (48%) by the addition of hamster caudal epididymal fluid (CEF) to the induction medium. Finally, the viability of the induced caput spermatozoa was significantly enhanced (p less than 0.05) by the removal of Fraction V albumin from the induction medium. In the presence of CEF and in the absence of albumin, 50% of the caput spermatozoa acquired progressive motility and sustained this motility for 4 h. Moreover, when fatty acid-free, charcoal-extracted albumin instead of Fraction V albumin was utilized in the induction procedure, a maximum of 43% of the caput spermatozoa acquired progressive motility and maintained this motility for 4 h, suggesting that the decreased sperm viability observed in the presence of Fraction V albumin was due to a contaminant of albumin, possibly fatty acids. The studies described herein demonstrate for the first time that immature quiescent caput epididymal spermatozoa can be induced to acquire progressive and sustained motility equivalent to that observed in mature caudal epididymal spermatozoa.  相似文献   

16.
The objectives of this study were to map the ontogeny of tyrosine phosphorylation signal transduction pathways during germ cell development and to determine their association with the differentiation of a functional gamete. Until testicular germ cells differentiate into spermatozoa, cAMP-induced tyrosine phosphorylation is not detectable. Entry of these cells into the epididymis is accompanied by sudden activation of the tyrosine phosphorylation pathway, initially in the principal piece of the cell and subsequently in the midpiece. In the caput and corpus epididymides, the potential to express this pathway is inhibited by the presence of calcium in the extracellular medium. However, calcium has no effect on the expression of this pathway in caudal epididymal sperm. The competence of these cells to phosphorylate the entire sperm tail, from the neck to the tail-end piece, is accompanied by a capacity to exhibit hyperactivated motility on stimulation with cAMP. A distinctly different pattern of tyrosine phosphorylation, involving the acrosomal domain of the sperm head, is invoked as spermatozoa enter the caput epididymis, and phosphorylation remains high until these cells enter the distal corpus and cauda. The proportion of cells exhibiting this form of tyrosine phosphorylation is not affected by extracellular calcium or cAMP but is negatively correlated (R2 = 0.99) with their ability to acrosome-react. However, this relationship is not causative. Our findings indicate that the development of functional spermatozoa is accompanied by carefully orchestrated changes in tyrosine phosphorylation, controlled by independent regulatory mechanisms in distinct subcellular compartments of these highly specialized cells.  相似文献   

17.
As spermatozoa mature within the epididymis they acquire the potential for capacitation and ultimately fertilization. In biochemical terms, the former is reflected in the progressive activation of a signal transduction pathway characterized by cAMP-mediated induction of phosphotyrosine expression on the sperm tail. In this study, we have examined the cellular mechanisms controlling this maturational event. Caput epididymal spermatozoa exhibited tyrosine phosphorylation on the sperm head that was largely unresponsive to cAMP and not significantly impaired by removal of extracellular HCO(3) (-). In contrast, caudal epididymal spermatozoa exhibited low levels of phosphorylation on the sperm head, yet responded dramatically to cAMP by phosphorylating a new set of proteins on the sperm tail via mechanisms that were highly dependent on extracellular HCO(3) (-). The impact of extracellular HCO(3) (-) depletion on caudal cells was not associated with a significant change in the redox regulation of cAMP but could be fully reversed by buffering the intracellular pH with N-Tris[Hydroxymethyl]methyl-3-amino-propanesulfonic acid (TAPS). The pattern of tyrosine phosphorylation was also profoundly influenced by the presence or absence of added extracellular calcium. In the presence of this cation, only caudal spermatozoa could respond to increased extracellular cAMP with tyrosine phosphorylation of the sperm tail. However, in calcium-depleted medium, this difference completely disappeared. Under these conditions, caput and caudal spermatozoa were equally competent to exhibit phosphotyrosine expression on the sperm tail in response to cAMP. These results emphasize the pivotal role played by calcium and HCO(3) (-) in modulating the changes in tyrosine phosphorylation observed during epididymal maturation.  相似文献   

18.
The transformation of hamster sperm motility during capacitation in vitro and during maturation in the caudal epididymis was analyzed and compared using videomicrography. Sperm recovered from the distal portion of the caudal epididymis, as well as ejaculated sperm recovered from the uterus exhibited low amplitude, planar flagellar beating. By 3 hr of incubation under capacitating conditions, the caudal epididymal sperm were swimming in helical patterns apparently produced by significantly increased acuteness of flagellar bending and by torsion seen as abrupt, periodic turning of the head. By 4 hr, most sperm were hyperactivated, swimming in circles resulting from asymmetrical, planar flagellar bending that was significantly more acute than the preceding patterns. When motility parameters of fresh sperm were compared with those of sperm swimming in the transitional helical pattern and with hyperactivated sperm, transitional sperm had significantly higher net and average path velocities than the others, indicating that they covered space at the greatest rate. This suggests that the transitional phase plays an important role in sperm transport. Sperm recovered from the proximal region of the caudal epididymis, near the corpus, swam in either the helical or hyperactivated patterns, or a mixture of the two. The means of their flagellar curvature ratios and linear indices were intermediate between helical and hyperactivated mean values. Thus, sperm undergoing final maturation in the caudal epididymis reverse the pattern of development of hyperactivation. Also, the development of hyperactivated motility must therefore entail induction of a preexisting potential for flagellar movement, rather than a maturational process.  相似文献   

19.
Second messengers are involved in sperm fertilizing potential, as both motility and the acrosome reaction are influenced by cAMP. Moreover, the activity of cyclic nucleotides is implicated in the appearance of tyrosine phosphorylated sperm proteins, which is associated with capacitation in the mammalian spermatozoa. Nevertheless, the involvement of the cAMP/protein kinase A (PK-A) pathway during pig sperm capacitation may be different from that observed in other mammals. The objective of the present study was to clarify the cAMP/PK-A pathway during the capacitation of porcine spermatozoa and to evaluate this impact on the p32 sperm tyrosine phosphoprotein appearance. The presence of p32 was assessed after incubating fresh pig sperm with IBMX/db-cAMP, H-89, a PK-A inhibitor or bistyrphostin, a tyrosine kinase inhibitor, in capacitating (CM) or non-capacitating conditions (NCM) by immunoblotting SDS-extracted and separated sperm proteins using an anti-phosphotyrosine antibody. When pig spermatozoa were incubated in CM supplemented with H-89 (50 microM) or bistyrphostin (1.2 microM), capacitation decreased significantly (P < 0.001). The p32 sperm tyrosine phosphoprotein, previously shown to be associated with capacitation of porcine sperm though not necessarily an end point of this phenomenon, was not modulated by IBMX/db-cAMP (100 microM/1 mM), H-89 (50 microM) nor bistyrphostin (1.2 microM). Our results indicate, therefore, that pig sperm are regulated somewhat differently than as described for other mammals, because although the cAMP/PK-A and tyrosine kinase pathways are involved in capacitation, they do not influence the appearance of p32.  相似文献   

20.
We have used the technique of fluorescence recovery after photobleaching to measure the diffusibility of the fluorescent lipid analogue, 1,1'-dihexadecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate on the morphologically distinct regions of the plasma membranes of mouse spermatozoa, and the changes in lipid diffusibility that result from in vitro hyperactivation and capacitation with bovine serum albumin. We found that, as previously observed on ram spermatozoa, lipid analogue diffusibility is regionalized on mouse spermatozoa, being fastest on the flagellum. The bovine serum albumin induced changes in diffusibility that occur with hyperactivation are also regionalized. Specifically, if we compare serum incubated in control medium, which maintains normal motility, with those hyperactivated in capacitating medium, we observe with hyperactivation an increase in lipid analogue diffusion rate in the anterior region of the head, the midpiece, and tail, and a decrease in diffusing fraction in the anterior region of the head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号