首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspergillus nidulans PW1 produces an extracellular carboxylesterase activity that acts on several lipid esters when cultured in liquid media containing olive oil as a carbon source. The enzyme was purified by gel filtration and ion exchange chromatography. It has an apparent MW and pI of 37 kDa and 4.5, respectively. The enzyme efficiently hydrolyzed all assayed glycerides, but showed preference toward short- and medium-length chain fatty acid esters. Maximum activity was obtained at pH 8.5 at 40°C. The enzyme retained activity after incubation at pHs ranging from 8 to11 for 12 h at 37°C and 6 to 8 for 24 h at 37°C. It retained 80% of its activity after incubation at 30 to 70°C for 30 min and lost 50% of its activity after incubation for 15 min at 80°C. Noticeable activation of the enzyme is observed when Fe2+ ion is present at a concentration of 1 mM. Inhibition of the enzyme is observed in the presence of Cu2+, Fe3+, Hg2+, and Zn2+ ions. Even though the enzyme showed strong carboxylesterase activity, the deduced N-terminal amino acid sequence of the purified protein corresponded to the protease encoded by prtA gene.  相似文献   

2.
In pepper plants (genus Capsicum), the resistance against Tobamovirus spp. is conferred by L gene alleles. The recently identified L variant L1a can recognize coat proteins (CPs) of Tobacco mild green mosaic virus Japanese strain (TMGMV‐J) and Paprika mild mottle virus Japanese strain (PaMMV‐J), but not of Pepper mild mottle virus (PMMoV), as the elicitor to induce resistance at 24 °C. Interestingly, L1a gene‐mediated resistance against TMGMV‐J, but not PaMMV‐J, is retained at 30 °C. This observation led us to speculate that L1a can discriminate between CPs of TMGMV‐J and PaMMV‐J. In this study, we aimed to determine the region(s) in CP by which L1a distinguishes TMGMV‐J from PaMMV‐J. By using chimeric CPs consisting of TMGMV‐J and PaMMV‐J, we found that the chimeric TMGMV‐J CP, whose residues in the β‐sheet domain were replaced by those of PaMMV‐J, lost its ability to induce L1a gene‐mediated resistance at 30 °C. In contrast, the chimeric PaMMV‐J CP with the β‐sheet domain replaced by TMGMV‐J CP was able to induce L1a gene‐mediated resistance at 30 °C. Furthermore, viral particles were not detected in the leaves inoculated with either chimeric virus. These observations indicated that the amino acids within the β‐sheet domain were involved in both the induction of L1a gene‐mediated resistance and virion formation. Further analyses using chimeric CPs of TMGMV‐J and PMMoV indicated that amino acids within the β‐sheet domain alone were not sufficient for the induction of L1a gene‐mediated resistance by TMGMV‐J CP. These results suggest that multiple regions in Tobamovirus CP are implicated in the induction of L1a gene‐mediated resistance.  相似文献   

3.
The epidermal growth factor (EGF) and erbB-2 receptors are structurally related membrane-bound tyrosine kinases. While these proteins exhibit close sequence homology, 50% overall and 80% in the tyrosine kinase domains, they respond very differently to heat stress. In NIH-3T3 or NR6 cells transfected with wild-type EGF-R and incubated at 37°C or heat shocked at 46°C, EGF binds to its receptor and stimulates receptor autophosphorylation to equivalent extents. At 46°C, however, the basal tyrosine kinase activity of the wild-type erbB-2 receptor is rapidly lost. When cells containing chimeric receptors composed of the EGF-R extracellular domain and intracellular domain of erbB-2 were heat stressed, 125I-EGF bound to the receptors, but did not stimulate receptor autophosphorylation. The decline in EGF-stimulated chimeric erbB-2 receptor autophosphorylation is dependent on the length of heat shock, with nearly 100% of the kinase activity lost after 60 min at 46°C. The loss of chimeric receptor erbB-2 kinase activity is not due to degradation of receptor protein, nor is it attributable to a specific transmembrane domain from either the EGF or erbB-2 receptors. Sensitivity of erbB-2 to heat stress is also not a result of denaturation of this receptor's carboxy-terminal domain. Insertion of the erbB-2 tyrosine kinase domain into the EGF-R confers heat stress sensitivity to the resultant chimeric receptor. Thus, although the EGF-R and erbB-2 kinase domains show a high degree of homology, the secondary/tertiary structures of these domains would seem to be stabilized in distinct manners. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Sulfur oxygenase reductase (SOR) enzyme is responsible for the initial oxidation step of elemental sulfur in archaea. Curiously, Aquifex aeolicus, a hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium, has the SOR-encoding gene in its genome. We showed, for the first time the presence of the SOR enzyme in A. aeolicus, its gene was cloned and recombinantly expressed in Escherichia coli and the protein was purified and characterised. It is a 16 homo-oligomer of approximately 600 kDa that contains iron atoms indispensable for the enzyme activity. The optimal temperature of SOR activity is 80°C and it is inactive at 20°C. Studies of the factors involved in getting the fully active molecule at high temperature show clearly that (1) incubation at high temperature induces more homogeneous form of the enzyme, (2) conformational changes observed at high temperature are required to get the fully active molecule and (3) acquisition of an active conformation induced by the temperature seems to be more important than the subunit number. Differences between A. aeolicus SOR and the archaea SORs are described.  相似文献   

5.
The OsmC-region (osmotically induced protein family) of the two-domain esterase EstO from the psychrotolerant bacterium Pseudoalteromonas arctica has been shown to increase thermolability. In an attempt to test if these properties can be conferred to another enzyme, we genetically fused osmC to the 3′-region of the family 8 xylanase encoding gene xyn8 from P. arctica. The chimeric open reading frame xyn8-OsmC was cloned and the chimeric protein was purified after heterologous expression in Escherichia coli. Xyn8 and Xyn8-OsmC showed cold-adapted properties (more than 60% activity at 0°C) using birchwood xylan as the preferred substrate. Maximal catalytic activity is slightly shifted from 15°C (Xyn8) to 20°C for Xyn8-OsmC. Thermostability of Xyn8-OsmC is significantly changed in comparison to wild-type Xyn8. The OsmC-fusion variant showed an apparent decrease in thermostability between 40 and 45°C, while both proteins are highly instable at 50°C.  相似文献   

6.
A phytase gene was cloned from Neosartorya spinosa BCC 41923. The gene was 1,455 bp in size, and the mature protein contained a polypeptide of 439 amino acids. The deduced amino acid sequence contains the consensus motif (RHGXRXP) which is conserved among phytases and acid phosphatases. Five possible disulfide bonds and seven potential N-glycosylation sites have been predicted. The gene was expressed in Pichia pastoris KM71 as an extracellular enzyme. The purified enzyme had specific activity of 30.95 U/mg at 37°C and 38.62 U/mg at 42°C. Molecular weight of the deglycosylated recombinant phytase, determined by SDS-PAGE, was approximately 52 kDa. The optimum pH and temperature for activity were pH 5.5 and 50°C. The residual phytase activity remained over 80% of initial activity after the enzyme was stored in pH 3.0 to 7.0 for 1 h, and at 60% of initial activity after heating at 90°C for 20 min. The enzyme exhibited broad substrate specificity, with phytic acid as the most preferred substrate. Its K m and V max for sodium phytate were 1.39 mM and 434.78 U/mg, respectively. The enzyme was highly resistant to most metal ions tested, including Fe2+, Fe3+, and Al3+. When incubated with pepsin at a pepsin/phytase ratio of 0.02 (U/U) at 37°C for 2 h, 92% of its initial activity was retained. However, the enzyme was very sensitive to trypsin, as 5% of its initial activity was recovered after treating with trypsin at a trypsin/phytase ratio of 0.01 (U/U).  相似文献   

7.
Fresh cytosols extracted from unfertilized amphibian eggs contain a cytostatic factor (CSF) which arrests the cell cycle at metaphase when microinjected into cleaving blastomeres. This CSF is sensitive to Ca2+, and is designated primary CSF (1°CSF). During storage of Ca2+-containing cytosols at 2°C, stable CSF activity appears, designated secondary CSF (2°CSF). In Rana pipiens egg cytosols, the development of 2°CSF coincides with the formation of a protein complex with a molecular weight above 2,000 kDa, and this large molecule exhibits a high 2°CSF activity when purified (Shibuya and Masui, 1989: Development 106:799–808). The present study shows that both the formation of 2°CSF protein complex and the development of its activity are inhibited by ethylamine and glycine-ethyl-ester (GEE), both known as potent transglutaminase (TGase) inhibitors. An affinity-purified polyclonal antibody raised against mammalian transglutaminase reacts with an approximately 68-kDa protein in fresh egg cytosols, as well as with the 2°CSF protein complex. In cytosols deprived of transglutaminase by immunoprecipitation, neither the development of 2°CSF activity nor the formation of its protein complex can occur. These results indicate that transglutaminase of Rana pipiens eggs is responsible for the formation of 2°CSF, and that transglutaminase itself is incorporated into 2°CSF molecules. Mol. Reprod. Dev. 47:302–311, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
The psychrotolerant Pseudoalteromonas issachenkonii PAMC 22718 was isolated for its high exo-acting chitinase activity in the Kara Sea, Arctic. An exo-acting chitinase (W-Chi22718) was homogeneously purified from the culture supernatant of PAMC 22718, the molecular weight of which was estimated to be approximately 112?kDa. Due to its β-N-acetylglucosaminidase activity, W-Chi22718 was able to produce N-acetyl-D-glucosamine (GlcNAc) monomers from chitin oligosaccharide substrates. W-Chi22718 displayed chitinase activity from 0 to 37°C (optimal temperature of 30°C) and maintained activity from pH 6.0 to 9.0 (optimal pH of 7.6). W-Chi22718 exhibited a relative activity of 13 and 35% of maximal activity at 0 and 10°C, respectively, which is comparable to the activities of previously characterized, cold-adapted bacterial chitinases. W-Chi22718 activity was enhanced by K+, Ca2+, and Fe2+, but completely inhibited by Cu2+ and SDS. We found that W-Chi22718 can produce much more (GlcNAcs) from colloidal chitin, working together with previously characterized cold-active endochitinase W-Chi21702. Genome sequencing revealed that the corresponding gene (chi22718_IV) was 2,856?bp encoding a 951?amino acid protein with a calculated molecular weight of approximately 102?kDa.  相似文献   

9.
The effect of Mn2+ and Ca2+ ions on the rate of trypsin autolysis was studied at pH 7.0 and at 34.4-60.2°C. For comparison, the kinetic constants of esterolytic activity of trypsin in the presence of the metal ion were determined at pH 7.4 and at 36° and 40°C. There was no significant difference in the rate of autolysis between Mn2+ and Ca2+ in the temperature range 34-47°C, but at 56.8° and 60.2° autolysis was slightly more rapid in the presence of Mn2+. The Mn2+ or Ca2+ ion bound to trypsin is supposed to control the conformation and thereby the stability and the activity of the enzyme. This indirect effect of Mn2+ and Ca2+ is discussed on a structural basis of the enzyme molecule.  相似文献   

10.
Thermotoga maritima TM0298 is annotated as an alcohol dehydrogenase, yet it shows high identity and similarity to mesophilic mannitol dehydrogenases. To investigate this enzyme further, its gene was cloned and expressed in Escherichia coli. The purified recombinant enzyme was most active on fructose and mannitol, making it the first known hyperthermophilic mannitol dehydrogenase. T. maritima mannitol dehydrogenase (TmMtDH) is optimally active between 90 and 100 °C and retains 63% of its activity at 120 °C but shows no detectable activity at room temperature. Its kinetic inactivation follows a first-order mechanism, with half-lives of 57 min at 80 °C and 6 min at 95 °C. Although TmMtDH has a higher V max with NADPH than with NADH, its catalytic efficiency is 2.2 times higher with NADH than with NADPH and 33 times higher with NAD+ than with NADP+. This cofactor specificity can be explained by the high density of negatively charged residues (Glu193, Asp195, and Glu196) downstream of the NAD(P) interaction site, the glycine motif. We demonstrate that TmMtDH contains a single catalytic zinc per subunit. Finally, we provide the first proof of concept that mannitol can be produced directly from glucose in a two-step enzymatic process, using a Thermotoga neapolitana xylose isomerase mutant and TmMtDH at 60 °C.  相似文献   

11.
An esterase gene, est10, was identified from the genomic library of a deep-sea psychrotrophic bacterium Psychrobacter pacificensis. The esterase exhibited the optimal activity around 25 °C and pH 7.5, and maintained as high as 55.0 % of its maximum activity at 0 °C, indicating its cold adaptation. Est10 was fairly stable under room temperatures, retaining more than 80 % of its original activity after incubation at 40 °C for 2 h. The highest activity was observed against the short-chain substrate p-nitrophenyl butyrate (C4) among the tested p-nitrophenyl esters (C2–C16). It was slightly activated at a low concentration (1 mM) of Zn2+, Mg2+, Ba2+, Ca2+, Cu2+, Fe3+, urea and EDTA, but was inhibited by DTT and totally inactivated by PMSF. Interestingly, increased salinity considerably stimulated Est10 activity (up to 143.2 % of original activity at 2 M NaCl) and stability (up to 126.4 % after incubation with 5 M NaCl for 6.5 h), proving its salt tolerance. 0.05 and 0.1 % Tween 20, Tween 80, Triton X-100 and CHAPS increased the activity and stability of Est10 while SDS, CTAB had the opposite effect. Est10 was quite active after incubation with several 30 % organic solvents (methanol, DMSO, ethanediol) but exhibited little activity with 30 % isopropanol, ethanol, n-butanol and acetonitrile.  相似文献   

12.
A temperature-controlled expression system for a foreign gene in Saccharomyces cerevisiae was constructed. In this system, a MATa hmlα2-102 HMRa sir3–8ts double mutant was used as host, and a DNA fragment bearing the promoter and pre- or pre-pro regions of the MFα1 gene encoding the α-factor of S. cerevisiae was used as a promoter for expression of a foreign gene cloned on a vector. When the host cells were incubated at a restrictive temperature for the sir3–8ts mutation (30°C to 35°C) they showed the α mating type and a PHO5 DNA fragment of S. cerevisiae, encoding repressible acid phosphatase, connected downstream of the MFα1 promoter was expressed. But when they were incubated at permissive lower temperature (25°C), at which they have the a mating type, the PHO5 DNA was not expressed. Acid phosphatase activity was increased 30-fold by shifting the incubation temperature from 25°C to 30°C. In this system it may also be possible to express a foreign gene at lower temperature but shut off its expression at higher temperature by connecting the gene to a promoter DNA of an a-specific gene.  相似文献   

13.
Carolyn Herz  Bernard Roizman 《Cell》1983,33(1):145-151
Human TK? 143 cells were converted to TK+ phenotype with a plasmid containing the native herpes simplex virus 1 (HSV-1), thymidine kinase, a β gene, and a chimeric ovalbumin gene consisting of the coding sequences of the ovalbumin gene linked to the promoter-regulatory region of the HSV-1 α 4 gene. Comparison of the synthesis of ovalbumin and the α 4 gene product in the converted cells infected with ts mutants in α 4 gene and incubated at the permissive (33°C) and nonpermissive (39°C) temperatures revealed the following. (i) The synthesis of both ovalbumin and α 4 gene product was transiently induced at the permissive temperature but continued at elevated levels for many hours at the nonpermissive temperature. (ii) The synthesis of both ovalbumin and α 4 gene products resumed when the infected cells were shifted from permissive to nonpermissive temperature after the shut-off of α protein synthesis. (iii) Although both the β-TK and α 4-ovalbumin chimeric genes were covalently linked on the same plasmid, each was regulated independently. We conclude that α gene regulation is determined solely by (a) the inducer and (b) the induction sequence contained in the promoter-regulatory region and not by the location or the higher order structure of the immediate environment of the gene.  相似文献   

14.
Lipase enzymes catalyze the reversible hydrolysis of triacylglycerol to fatty acids and glycerol at the lipid–water interface. The metabolically versatile Ralstonia eutropha strain H16 is capable of utilizing various molecules containing long carbon chains such as plant oil, organic acids, or Tween as its sole carbon source for growth. Global gene expression analysis revealed an upregulation of two putative lipase genes during growth on trioleate. Through analysis of growth and activity using strains with gene deletions and complementations, the extracellular lipase (encoded by the lipA gene, locus tag H16_A1322) and lipase-specific chaperone (encoded by the lipB gene, locus tag H16_A1323) produced by R. eutropha H16 was identified. Increase in gene dosage of lipA not only resulted in an increase of the extracellular lipase activity, but also reduced the lag phase during growth on palm oil. LipA is a non-specific lipase that can completely hydrolyze triacylglycerol into its corresponding free fatty acids and glycerol. Although LipA is active over a temperature range from 10 °C to 70 °C, it exhibited optimal activity at 50 °C. While R. eutropha H16 prefers a growth pH of 6.8, its extracellular lipase LipA is most active between pH 7 and 8. Cofactors are not required for lipase activity; however, EDTA and EGTA inhibited LipA activity by 83 %. Metal ions Mg2+, Ca2+, and Mn2+ were found to stimulate LipA activity and relieve chelator inhibition. Certain detergents are found to improve solubility of the lipid substrate or increase lipase-lipid aggregation, as a result SDS and Triton X-100 were able to increase lipase activity by 20 % to 500 %. R. eutropha extracellular LipA activity can be hyper-increased, making the overexpression strain a potential candidate for commercial lipase production or in fermentations using plant oils as the sole carbon source.  相似文献   

15.
We have isolated a mutant in fission yeast, in which mitosis is uncoupled from completion of DNA replication when DNA synthesis is impaired by a thermosensitive mutation in the gene encoding the catalytic subunit of DNA polymerase δ. By functional complementation, we cloned the wild-type gene and identified it as the recently cloned checkpoint gene crb2 + /rhp9 + . This gene has been implicated in the DNA damage checkpoint and acts in the Chk1 pathway. Unlike the deleted strain dcrb2, cells bearing the crb2-1 allele were not affected in the DNA repair checkpoint after UV or MMS treatment at 30°?C, but were defective in this checkpoint function when treated with MMS at 37°?C. We analysed the involvement of Crb2 in the S/M checkpoint by blocking DNA replication with hydroxyurea, by using S phase cdc mutants, or by overexpression of the mutant PCNA L68S. Both crb2 mutants were unable to maintain the S/M checkpoint at 37°?C. Furthermore, the crb2 + gene was required, together with the cds1 + gene, for the S/M checkpoint at 30°?C. Finally, both the crb2 deletion and the crb2-1 allele induced a rapid death phenotype in the polδts3 background at both 30°?C and 37°?C. The rapid death phenotype was independent of the checkpoint functions.  相似文献   

16.
The thermodynamic potential for the abiotic synthesis of the five common nucleobases (adenine, cytosine, guanine, thymine, and uracil) and two monosaccharides (ribose and deoxyribose) from formaldehyde and hydrogen cyanide has been quantified under temperature, pressure, and bulk composition conditions that are representative of hydrothermal systems. The activities of the precursor molecules (formaldehyde and hydrogen cyanide) required to evaluate the thermodynamics of biomolecule synthesis were computed using the concentrations of aqueous N2, CO, CO2 and H2 reported in the modern Rainbow hydrothermal system. The concentrations of precursor molecules that can be synthesized are strongly dependent on temperature with larger concentrations prevailing at lower temperatures. Similarly, the thermodynamic drive to synthesize nucleobases, ribose and deoxyribose varies considerably as a function of temperature: all of the biomolecules considered in this study are thermodynamically favored to be synthesized throughout the temperature range from 0°C to between 150°C and 250°C, depending on the biomolecule. Furthermore, activity diagrams have been generated to illustrate that activities in the range of 10−2– 10−6 for nucleobases, ribose and deoxyribose can be in equilibrium with a range of precursor molecule activities at 150°C and 500 bars. The results presented here support the notion that hydrothermal systems could have played a fundamental role in the origin of life, and can be used to plan and constrain experimental investigation of the abiotic synthesis of nucleic-acid related biomolecules.  相似文献   

17.
A mannosylglycerate synthase (MgS) gene detected in the genome of Selaginella moellendorffii was expressed in E. coli and the recombinant enzyme was purified and characterized. A remarkable and unprecedented feature of this enzyme was the ability to efficiently synthesize mannosylglycerate (MG) and glucosylglycerate (GG) alike, with maximal activity at 50 °C, pH 8.0 and with Mg2+ as reaction enhancer. We have also identified a novel glycoside hydrolase gene in this plant’s genome, which was functionally confirmed to be highly specific for the hydrolysis of MG and GG and named MG hydrolase (MgH), due to its homology with bacterial MgHs. The recombinant enzyme was maximally active at 40 °C and at pH 6.0–6.5. The activity was independent of cations, but Mn2+ was a strong stimulator. Regardless of these efficient enzymatic resources we could not detect MG or GG in S. moellendorffii or in the extracts of five additional Selaginella species. Herein, we describe the properties of the first eukaryotic enzymes for the synthesis and hydrolysis of the compatible solutes, MG and GG.  相似文献   

18.
A quasielastic light-scattering system has been constructed to study human fibrinogen. The first phase of the investigation was an attempt to clarify the shape of the firbinogen molecule using diffusion methods. The translational diffusion coefficient was measured as 2.04 ± 0.09 × 10?7 cm2 sec?1. Aggregation is suggested as the reason for a lower value previously obtained using this technique. Diffusion indicated the molecule was rigid and did not dissociate at low concentration, low ionic strength, or 37°C. Thermal denaturation was observed at 40°C. At 3°C, a second thermal instability was discovered.  相似文献   

19.
The phyL gene encoding phytase from the industrial strain Bacillus licheniformis ATCC 14580 (PhyL) was cloned, sequenced, and overexpressed in Escherichia coli. Biochemical characterization demonstrated that the recombinant enzyme has an apparent molecular weight of nearly 42 kDa. Interestingly, this enzyme was optimally active at 70–75 °C and pH 6.5–7.0. This enzyme is distinguishable by the fact that it preserved more than 40 % of its activity at wide range of temperatures from 4 to 85 °C. This new phytase displayed also a high specific activity of 316 U/mg. For its maximal activity and thermostability, this biocatalyst required only 0.6 mM of Ca2+ ion and exhibited high catalytic efficiency of 8.3 s?1 μM?1 towards phytic acid.  相似文献   

20.
An epoxide hydrolase gene of about 0.8 kb was cloned from Rhodococcus opacus ML-0004, and the open reading frame (ORF) sequence predicted a protein of 253 amino acids with a molecular mass of about 28 kDa. An expression plasmid carrying the gene under the control of the tac promotor was introduced into Escherichia coli, and the epoxide hydrolase gene was successfully expressed in the recombinant strains. Some characteristics of purified recombinant epoxide hydrolase were also studied. Epoxide hydrolase showed a high stereospecificity for l(+)-tartaric acid, but not for d(+)-tartaric acid. The epoxide hydrolase activity could be assayed at the pH ranging from 3.5 to 10.0, and its maximum activity was obtained between pH 7.0 and 7.5. The enzyme was sensitive to heat, decreasing slowly between 30°C and 40°C, and significantly at 45°C. The enzyme activity was activated by Ca2+ and Fe2+, while strongly inhibited by Ag+ and Hg+, and slightly inhibited by Cu2+, Zn2+, Ba2+, Ni+, EDTA–Na2 and fumarate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号