首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The contractile vacuole (CV) cycle ofChlamydomonas reinhardtii has been investigated by videomicroscopy and electron microscopy. Correlation of the two kinds of observation indicates that the total cycle (15 s under the hypo-osmotic conditions used for videomicroscopy) can be divided into early, middle, and late stages. In the early stage (early diastole, about 3 s long) numerous small vesicles about 70–120 nm in diameter are present. In the middle stage (mid-diastole, about 6 s long), the vesicles appear to fuse with one another to form the contractile vacuole proper. In the late stage (late diastole, also about 6 s long), the CV increases in diameter by the continued fusion of small vesicles with the vacuole, and makes contact with the plasma membrane. The CV then rapidly decreases in size (systole, about 0.2 s). In isosmotic media, CVs do not appear to be functioning; under these conditions, the CV regions contain numerous small vesicles typical of the earliest stage of diastole. Fine structure observations have provided no evidence for a two-component CV system such as has been observed in some other cell types. Electron microscopy of cryofixed and freeze-substituted cells suggests that the irregularity of the profiles of larger vesicles and vacuoles and some other morphological details seen in conventionally fixed cells may be shrinkage artefacts. This study thus defines some of the membrane events in the normal contractile vacuole cycle ofChlamydomonas, and provides a morphological and temporal basis for the study of membrane fusion and fluid transport across membranes in a cell favorable for genetic analysis.Abbrevations CV contractile vacuole - PM plasma membrane  相似文献   

2.
Summary Four independent osmoregulatory mutants,osml, osm3,osm4, and osm7, were isolated on the basis of their requirement for growth medium of high osmotic strength. In normal low-osmoticstrength medium, in contrast to wild-type cells, the mutants grow poorly or not at all; in distilled water mutant cells are immobilized and eventually swell and burst. The mutants were examined by ordinary brightfield and phase-contrast microscopy, videomicroscopy, and electron microscopy. The four mutants showed different defects in the contractile vacuole (CV) cycle. Timing of various stages of the CV cycle showed thatosm1 was affected primarily in the early stage of the cycle when the CV begins to grow,osm3 primarily in midcycle when vacuoles fuse to form the CV proper,osm7 at a late stage of the cycle at docking and fusion of the CV with the plasma membrane, andosm4 during contraction of the CV. At the electron microscopic level, in dilute medium, mutant cells by comparison with wild-type cells had large autophagosomes, swollen mitochondria, and dilated ER cisternae. Although electron microscopy showed general abnormalities of the contractile vacuoles consistent with the videomicroscopic observations of living cells, no obvious vacuole membrane abnormalities were seen which would explain the mutational defects. The mutations help define the separate processes that contribute to the coordinated CV cycle inChlamydomonas, and open the way to eventual isolation of some of the genes responsible for CV function.Abbreviations CV contractile vacuole - TAP Tris-acetate-phosphate medium - TAP+L medium supplemented with lactose - TAP+S medium supplemented with sucrose or other sugar  相似文献   

3.
AP180, one of many assembly proteins and adaptors for clathrin, stimulates the assembly of clathrin lattices on membranes, but its unique contribution to clathrin function remains elusive. In this study we identified the Dictyostelium discoideum ortholog of the adaptor protein AP180 and characterized a mutant strain carrying a deletion in this gene. Imaging GFP-labeled AP180 showed that it localized to punctae at the plasma membrane, the contractile vacuole, and the cytoplasm and associated with clathrin. AP180 null cells did not display defects characteristic of clathrin mutants and continued to localize clathrin punctae on their plasma membrane and within the cytoplasm. However, like clathrin mutants, AP180 mutants, were osmosensitive. When immersed in water, AP180 null cells formed abnormally large contractile vacuoles. Furthermore, the cycle of expansion and contraction for contractile vacuoles in AP80 null cells was twice as long as that of wild-type cells. Taken together, our results suggest that AP180 plays a unique role as a regulator of contractile vacuole morphology and activity in Dictyostelium.  相似文献   

4.
箭舌豌豆根瘤液泡中细菌周膜来源的研究   总被引:3,自引:0,他引:3  
韩善华 《微生物学报》1995,35(5):381-385
电镜观察结果表明,幼龄箭舌豌豆根瘤侵染细胞的细胞质较少,中央是一些体积较大的液泡。细胞质中侵入线经常可见,由侵入线释放出来的细菌均有细菌周膜。这些细菌只位于细胞质中,不出现在液泡里面。成熟根瘤中的侵染细胞与此不同,它们中有大量的成熟侵染细胞,细胞质丰富,里面充满大量细菌,中央常有一个大液泡。当中央液泡发育到一定程度时,位于其附近的细菌可通过液泡膜内吞、液泡膜与细菌周膜融合及液泡膜破裂3种途径进入液泡,后一种途径常伴有寄主细胞质。液泡中的细菌绝大部分裸露在外,只有个别细菌具有细菌周膜且多位于液泡膜的破损处附近,因此细菌周膜可能是原来就有的。  相似文献   

5.
ABSTRACT. Membrane dynamics of the contractile vacuole complex of Paramecium were investigated using conventional electron microscopy of cells so that the vacuoles were serial-sectioned longitudinally and transversely. During systole, vacuolar membrane collapses first into flattened cisternae which undergo further modification into a mass of interconnected small membrane tubules. These tubules retain their connections with the radiating microtubular ribbons; consequently they are found only in the poleward hemisphere. Permanent connections between ampullae and the collapsed vacuole membrane could not be verified nor was a sphincter-like mechanism for closing such a junction observed. Membranes of the ampullae and the collecting canals also collapse to varying extents into arrays of tubules that remain bound to microtubular ribbons during diastole. Thus vacuole, ampullae, and collecting canal membranes all assume tubular forms when internal volume is at a minimum. Having failed to observe a microfilamentous encasement of the vacuole, we suggest that an alternative mechanism for the “contractile” function should be sought. One such is based on fluid volume increase and fluid flow within transiently interconnected tubular membrane systems that cycle between a tubular and a planar membrane form as internal volume is periodically increased and reduced. The driving force for this mechanism might best be sought in the molecular structure of the membranes of the contractile vacuole complex.  相似文献   

6.
Brefeldin A (BFA) causes a block in the secretory system of eukaryotic cells. In the scaly green flagellate Scherffelia dubia, BFA also interfered with the function of the contractile vacuoles (CVs). The CV is an osmoregulatory organelle which periodically expels fluid from the cell in many freshwater protists. Fusion of the CV membrane with the plasma membrane is apparently blocked by BFA in S. dubia. The two CVs of S. dubia swell and finally form large central vacuoles (LCVs). BFA-induced formation of LCVs depends on V-ATPase activity, and can be reversed by hypertonic media, suggesting that water accumulation in the LCVs is driven by osmosis. We suggest that the BFA-induced formation of LCVs represents a prolonged diastole phase. A normal diastole phase takes about 20 s and is difficult to investigate. Therefore, BFA-induced formation of LCVs in S. dubia represents a unique model system to investigate the diastole phase of the CV cycle.  相似文献   

7.
The small Mr Rab4-like GTPase, RabD, localizes to the endosomal pathway and the contractile vacuole membrane system in Dictyostelium discoideum. Stably transformed cell lines overexpressing a dominant negative functioning RabD internalized fluid phase marker at 50% of the rate of wild-type cells. Mutant cells were also slower at recycling internalized fluid. Microscopic and biochemical approaches indicated that the transport of fluid to large postlysosome vacuoles was delayed in mutant cells, resulting in an accumulation in acidic smaller vesicles, probably lysosomes. Also, RabD N121I-expressing cell lines missorted a small but significant percentage of newly synthesized lysosomal alpha-mannosidase precursor polypeptides. However, the majority of the newly synthesized alpha-mannosidase was transported with normal kinetics and correctly delivered to lysosomes. Subcellular fractionation and immunofluorescent microscopy indicated that in mutant cells contractile vacuole membrane proteins were associated with compartments morphologically distinct from the normal reticular network. Osmotic tests revealed that the contractile vacuole functioned inefficiently in mutant cells. Our results suggest that RabD regulates membrane traffic along the endosomal pathway, and that this GTPase may play a role in regulating the structure and function of the contractile vacuole system by facilitating communication with the endosomal pathway.  相似文献   

8.
The organic acid-secreting trichomes of chickpea (Cicer arietinum L.) were exposed to 2.5 mm lanthanum nitrate for 24 hr, and this concentration did not inhibit trichome secretion compared with that of controls. We subsequently used this nontoxic concentration of lanthanum to examine endocytosis. In the stalk cells of these secretory trichomes, exogenously applied lanthanum nitrate was present in cell walls and vacuoles, as well as within both invaginations in the plasma membrane and vesicles in the peripheral cytoplasm between the plasma membrane and the tonoplast. In the head cells, lanthanum nitrate was present in cell walls and in vesicles that form a layer in the cytoplasm around the edge of the head cells, but was not present in vacuoles. We propose that fluid phase endocytosis targeted to the vacuole takes place in the stalk cells and that endocytosis occurs in the head cells to remove excess plasma membrane after the fusion of secretory vesicles with the plasma membrane. This is the first demonstration of endocytosis in secretory trichomes.  相似文献   

9.
Water expulsion by the contractile vacuole (CV) in Dictyostelium is carried out by a giant kiss-and-run focal exocytic event during which the two membranes are only transiently connected but do not completely merge. We present a molecular dissection of the GTPase Rab8a and the exocyst complex in tethering of the contractile vacuole to the plasma membrane, fusion, and final detachment. Right before discharge, the contractile vacuole bladder sequentially recruits Drainin, a Rab11a effector, Rab8a, the exocyst complex, and LvsA, a protein of the Chédiak-Higashi family. Rab8a recruitment precedes the nucleotide-dependent arrival of the exocyst to the bladder by a few seconds. A dominant-negative mutant of Rab8a strongly binds to the exocyst and prevents recruitment to the bladder, suggesting that a Rab8a guanine nucleotide exchange factor activity is associated with the complex. Absence of Drainin leads to overtethering and blocks fusion, whereas expression of constitutively active Rab8a allows fusion but blocks vacuole detachment from the plasma membrane, inducing complete fragmentation of tethered vacuoles. An indistinguishable phenotype is generated in cells lacking LvsA, implicating this protein in postfusion detethering. Of interest, overexpression of a constitutively active Rab8a mutant reverses the lvsA-null CV phenotype.  相似文献   

10.
ABSTRACT. The heat-shock method for induction of the macrostomal form of Tetrahymena vorax involves the transfer of cells to reduced nutrient medium and the application of a series of elevated temperature shocks followed by washing the protozoa into inorganic medium. The component of the procedure that had the greatest effect on food vacuoles was the heat shocks. At the end of the heat shocks, cells formed vacuoles at a lower rate than non-heat-shocked cells, but the size of the vacuoles formed was larger and the protozoa contained an increased number of vacuoles and total vacuolar membrane. The rate was further reduced by washing cells into nonnutrient medium. In the absence of the heat shocks, the medium had little effect on the capacity of the cells to form vacuoles although after 7.5 h in inorganic medium, the vacuoles formed were smaller and the protozoa possessed fewer vacuoles and therefore less vacuolar membrane. The amount of membrane required to form the cytopharyngeal pouch of the macrostomal cell type was equivalent to the surface area of food vacuoles present in cells prior to the onset of the heat shocks, but the number and surface area of vacuoles decline between the time of oral resorption and pouch development.  相似文献   

11.
The class V myosins are actin-based motors that move a variety of cellular cargoes [1]. In budding yeast, their activity includes the relocation of a portion of the vacuole from the mother cell to the bud [2, 3]. Fission yeast cells contain numerous (approximately 80) small vacuoles. When S. pombe cells are placed in water, vacuoles fuse in response to osmotic stress [4]. Fission yeast possess two type V myosin genes, myo51(+) and myo52(+) [5]. In a myo51Delta strain, vacuoles were distributed throughout the cell, and mean vacuole diameter was identical to that seen in wild-type cells. When myo51Delta and wild-type cells were placed in water, vacuoles enlarged by fusion. In myo52Delta cells, by contrast, vacuoles were smaller and mostly clustered around the nucleus, and fusion in water was largely inhibited. When cells containing GFP-Myo52 were placed in water, Myo52 was seen to redistribute from the cell poles to the surface of the fusing vacuoles. Vacuole fusion in fission yeast was inhibited by the microtubule drug thiabendazole (TBZ) but not by the actin inhibitor latrunculin B. This is the first demonstration of the involvement of a type V myosin, possibly via an interaction with microtubules, in homotypic membrane fusion.  相似文献   

12.
The intracellular distribution and level of acid hydrolases in Ochromonas malhamensis were studied in cells grown osmotrophically in a defined medium, in a carbon-free starvation medium, and during phagotrophy in each of these media. By cytochemical techniques, little enzymic reaction product was observed in the vacuoles of osmotrophic cells grown in the defined medium. Starved cells, however, contained autophagic vacuoles and cannibalized other Ochromonas cells. Dense enzymic reaction product was observed in the digestive vacuoles and in the Golgi cisternae of these starved cells. Moreover, starved cells and cells grown in a nutritionally complete medium ingested Escherichia coli which appeared in digestive vacuoles containing enzymic reaction product. Biochemical assays for lysosomal acid phosphatase (E.C. 3.1.3.2 orthophosphoric monoester phosphohydrolase) and acid ribonuclease (E.C. 2.7.7.16 ribonucleate nucleotido-2'-transferase) were done on Ochromonas cultures in the same experimental treatments and under identical assay conditions as the cytochemical study. During starvation, the acid hydrolase specific activities were consistently twice those found in cells grown in an osmotrophic complete medium. Ochromonas fed E. coli showed no increase in acid hydrolase specific activity as compared to controls not fed E. coli. The latency of lysosomal acid hydrolases in cells fixed with glutaraldehyde was reduced, suggesting that this fixative increases lysosomal membrane permeability and may release enzymes or their reaction products into the cytoplasmic matrix during cytochemical analysis. This could explain the cytoplasmic staining artifact sometimes observed with glutaraldehyde-fixed cells when studied by the Gomori technique. This study confirms that Ochromonas malhamensis, a phytoflagellate, does produce digestive vacuoles and can ingest bacteria, thereby fulfilling its role as a heterotroph in an aquatic food chain. When Ochromonas is grown in a nutritionally complete osmotrophic medium, phagocytosis causes appearance of acid hydrolases in the digestive vacuoles, whereas the total activity of the enzymes remains unchanged. An organic carbon-free medium strongly stimulates acid hydrolaes activity and causes these enzymes to appear in the digestive vacuoles whether phagocytosis occurs or not.  相似文献   

13.
The cadA gene in Dictyostelium encodes a Ca2+-dependent cell adhesion molecule DdCAD-1 that contains two β-sandwich domains. DdCAD-1 is synthesized in the cytoplasm as a soluble protein and then transported by contractile vacuoles to the plasma membrane for surface presentation or secretion. DdCAD-1-green fluorescent protein (GFP) fusion protein was expressed in cadA-null cells for further investigation of this unconventional protein transport pathway. Both morphological and biochemical characterizations showed that DdCAD-1-GFP was imported into contractile vacuoles. Time-lapse microscopy of transfectants revealed the transient appearance of DdCAD-1-GFP-filled vesicular structures in the lumen of contractile vacuoles, suggesting that DdCAD-1 could be imported by invagination of contractile vacuole membrane. To assess the structural requirements in this transport process, the N-terminal and C-terminal domains of DdCAD-1 were expressed separately in cells as GFP fusion proteins. Both fusion proteins failed to enter the contractile vacuole, suggesting that the integrity of DdCAD-1 is required for import. Such a requirement was also observed in in vitro reconstitution assays using His6-tagged fusion proteins and purified contractile vacuoles. Import of DdCAD-1 was compromised when two of its three Ca2+-binding sites were mutated, indicating a role for Ca2+ in the import process. Spectral analysis showed that mutations in the Ca2+-binding sites resulted in subtle conformational changes. Indeed, proteins with altered conformation failed to enter the contractile vacuole, suggesting that the import signal is somehow integrated in the three-dimensional structure of DdCAD-1.  相似文献   

14.
Paramecium calkinsi from tidal marshes survive a wide salinity range. Fluid output of contractile vacuoles of these cells decreased as salinity of the medium to which they were acclimated increased, and both pulse rate and vacuole volume were used to regulate output. When cells were first exposed to more dilute medium, contractile vacuoles greatly increased volume so that fluid output increased even though pulse rate decreased. In cells shifted to a more concentrated medium, contractile vacuole output decreased by decreasing pulse rate. The contractile vacuole is surrounded by a set of collecting structures which change form as the salinity changes. Distensible ampullae are found in media of low salinity and collecting canals are found in media of high salinity. When cells are shifted from high salinity to low, the number of ampullae increases and the number of canals decreases. When cells are shifted from low salinity to high, the number of ampullae decreases and the number of canals decreases. Other non-contracting vacuoles also appear in response to a hypoosmotic shock. These include vacuoles within the cell as well as "blisters" on the surface. The number and frequency of blisters increases with the size of the hypoosmotic shock. They detach from cells without resulting in any visible loss of cytoplasm. Non-contractile vacuoles may play a role in sequestering and removing excess water that the contractile vacuoles cannot handle.  相似文献   

15.
ABSTRACT. Paramecium calkinsi from tidal marshes survive a wide salinity range. Fluid output of contractile vacuoles of these cells decreased as salinity of the medium to which they were acclimated increased, and both pulse rate and vacuole volume were used to regulate output. When cells were first exposed to more dilute medium, contractile vacuoles greatly increased volume so that fluid output increased even though pulse rate decreased. In cells shifted to a more concentrated medium, contractile vacuole output decreased by decreasing pulse rate. The contractile vacuole is surrounded by a set of collecting structures which change form as the salinity changes. Distensible ampullae are found in media of low salinity and collecting canals are found in media of high salinity. When cells are shifted from high salinity to low, the number of ampullae increases and the number of canals decreases. When cells are shifted from low salinity to high, the number of ampullae decreases and the number of canals decreases. Other non-contracting vacuoles also appear in response to a hypoosmotic shock. These include vacuoles within the cell as well as "blisters" on the surface. The number and frequency of blisters increases with the size of the hypoosmotic shock. They detach from cells without resulting in any visible loss of cytoplasm. Non-contractile vacuoles may play a role in sequestering and removing excess water that the contractile vacuoles cannot handle.  相似文献   

16.
The relationship of cell size and contractile vacuole efflux to osmotic stress was studied in Tetrahymena pyriformis strain W, after transfer into fresh solutions iso- or hypoosmotic to the growth medium. Microscopic measurements of the cell and contractile vacuole dimensions, made with an image-sharing ocular at 27 C, allowed the calculation of the cell size and shape and the vacuolar efflux rate which provide a measure of osmoregulation. The contractile vacuole cycles have no homeostatic oscillations. In 0.03–0.10 osmolar solutions, the cell size and shape are constant while the vacuolar efflux rate has an inverse linear dependence upon extracellular osmolarity. Regression analyses indicate that for cells with systole faster than 0.1 sec (the major part of the population), it is only the final diastolic volume of the contractile vacuole that is related to osmotic stress while the frequency of systole is independent of osmotic stress and has a constant period of 7.7 ± 0.2 sec. Therefore, osmotic stress upon Tetrahymena is regulated by a corresponding change in the filling rate of its contractile vacuole to allow an unaltered cell size and shape. Kinetic measurements of vacuoles during diastole fit the model (dV/dt = K1-K2A), where (dV/dt) is the vacuolar filling rate and (A) is the vacuolar surface area. This dependence of vacuolar volume upon its surface area may be ascribed either to elastic components of the vacuolar membrane or to an increasing leakiness of this membrane during diastole. Mitochondrial inhibitors were used to observe the energy requirements of vacuolar operation and of intracellular secretion of water.  相似文献   

17.
SYNOPSIS. When the structures involved in digestive events in T. pyriformis are examined at the electron microscope level, some information is added to that long known from light microscopy. The food trapping mechanism consists of the three membranelles, undulating membrane, oral ribs, and a “valve” apparently closing the opening to the cytopharynx. Both of the latter structures are supported by microtubules. Fibers extend internally from the cytopharynx and are closely associated with the food vacuole as it forms. Clear vacuoles resembling pinocytic vacuoles appear to arise from differentiated areas of the pellicle and plasma membrane. These vacuoles may fuse with primary lysosomes. Hydrolases are thus contributed to the pinocytic vacuoles which may then fuse with food vacuoles. When first formed food vacuoles contain no hydrolases but may acquire them directly, from primary lysosomes or from pinocytic vacuoles. Digestion proceeds to completion in the food vacuole, at which time soluble food products are released to the cytoplasm. Undigested materials are lost through the cytopyge. In stationary growth phase cells autophagic vacuoles form containing mitochondria and other cellular particulates. Such vacuoles probably contain hydrolases when formed and they may receive others by fusion with primary lysosomes.  相似文献   

18.
Contractile vacuoles are organelles that collect fluid from the cytoplasm and expel it to the outside. After each discharge (systole), they appear again and expand (diastole). They are widely distributed among Protozoa, and have been found also in some fresh water algae, sponges, and recently in some blood cells of the frog, guinea pig, and man. In spite of the extensive work on the contractile vacuole, very little is known concerning its mode of operation. An electron microscope study of a suctorian Tokophrya infusionum provided an opportunity to study thin sections of contractile vacuoles, and in these some structures were found which could be part of a mechanism for the systolic and diastolic motions the organelle displays. In Tokophrya, as in Suctoria and Ciliata in general, the contractile vacuole has a permanent canal connecting it with the outside. The canal appears to have a very elaborate structure and is composed of three parts: (1) a pore; (2) a channel; and (3) a narrow tubule located in a papilla protruding into the cavity of the contractile vacuole. Whereas the pore and channel have fixed dimensions and are permanently widely open, the tubule has a changeable diameter. At diastole it is so narrow (about 25 to 30 mµ in diameter) that it could be regarded as closed, while at systole it is widely open. It is assumed that the change in diameter is due to the contraction of numerous fine fibrils (about 180 A thick) which are radially disposed around the canal in form of a truncated cone, with its tip at the channel, and its base at the vacuolar membrane. It seems most probable that the broadening of the tubule results in discharge of the content of the contractile vacuole. In the vicinity of the very thin limiting vacuolar membrane, small vesicles and canaliculi of the endoplasmic reticulum, very small dense particles, and mitochondria may be found. In addition, rows of closely packed vesicles are present in this region, and in other parts of the cytoplasm. It is suggested that they might represent dictyosome-like bodies, responsible for withdrawing fluids from the cytoplasm and then conveying them to the contractile vacuole, contributing to its expansion at diastole.  相似文献   

19.
Clathrin-coated vesicles play an established role in endocytosis from the plasma membrane, but they are also found on internal organelles. We examined the composition of clathrin-coated vesicles on an internal organelle responsible for osmoregulation, the Dictyostelium discoideum contractile vacuole. Clathrin puncta on contractile vacuoles contained multiple accessory proteins typical of plasma membrane–coated pits, including AP2, AP180, and epsin, but not Hip1r. To examine how these clathrin accessory proteins influenced the contractile vacuole, we generated cell lines that carried single and double gene knockouts in the same genetic background. Single or double mutants that lacked AP180 or AP2 exhibited abnormally large contractile vacuoles. The enlarged contractile vacuoles in AP180-null mutants formed because of excessive homotypic fusion among contractile vacuoles. The SNARE protein Vamp7B was mislocalized and enriched on the contractile vacuoles of AP180-null mutants. In vitro assays revealed that AP180 interacted with the cytoplasmic domain of Vamp7B. We propose that AP180 directs Vamp7B into clathrin-coated vesicles on contractile vacuoles, creating an efficient mechanism for regulating the internal distribution of fusion-competent SNARE proteins and limiting homotypic fusions among contractile vacuoles. Dictyostelium contractile vacuoles offer a valuable system to study clathrin-coated vesicles on internal organelles within eukaryotic cells.  相似文献   

20.
Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号