首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The digestive tract of the freshwater amphipod Hyalella azteca is a straight but differentiated tube consisting of foregut, midgut, and hindgut divisions. The foregut is subdivided into a tubular esophagus, a cardiac stomach, and a pyloric stomach. The cuticular lining of the cardiac stomach is elaborated into a set of food-crushing plates and ossicles, the gastric mill, while the pyloric cuticle forms a complex straining and pressing mechanism. Nine caeca arise from the midgut, seven anteriorly and two posteriorly. Four of the anterior caeca, the hepatopancreatic caeca, are believed to be the primary sites of digestion and absorption. The remaining caeca may be absorptive, secretory, or both. The much-folded hindgut wall is capable of great distention by extrinsic muscle action for water intake to aid in flushing fecal material out of the anus; such action also may stimulate antiperistalsis by intrinsic rectal muscles.  相似文献   

2.
We describe the morphology of the foregut of the spider crab Maja brachydactyla Balss, 1922, from first larval stage to adult, with detailed stage‐specific documentation using light and scanning electron microscopy. A total of 40 ossicles have been identified in the foregut of adults of M. brachydactyla using Alizarin‐Red staining. The morphological pattern of the ossicles and gastric mill is very similar to other Majoidea species with only a few variations. The foregut of the zoeae stages appeared as a small and simple cavity, with a cardio‐pyloric valve that separates the stomach into cardiac and pyloric regions. The pyloric filter is present from the first zoea, in contrast to the brachyuran species which have an extended larval development. Calcified structures have been identified in the cardio‐pyloric valve and pyloric region of the zoeal stages. The most significant changes in foregut morphology take place after the metamorphosis from ZII to megalopa, including the occurrence of the gastric mill. In the megalopa stage, the foregut ossicles are recognizable by their organization and general morphology, but are different from the adult phase in shape and number. Moreover, the gastric teeth show important differences: the cusps of the lateral teeth are sharp (no molariform); the dorsal tooth have a small, dentate cusp (not a well‐developed quadrangular cusp); and the accessory teeth are composed of one sharp peak (instead of four sharp peaks). The gastric mill ontogeny from megalopa to adult reveals intermediate morphologies during the earlier juvenile stages. The relationship between gastric mill structures with food preferences and their contribution to the brachyuran phylogeny are briefly discussed. J. Morphol. 276:1109–1122, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
利用光学显微镜和扫描电子显微镜,在形态学和组织学水平上研究_『桃小食心虫 Carposina sasakii 幼虫消化道和屿氏管的结构.桃小食心虫幼虫消化道由前肠、中肠和后肠组成.前肠细短,肌肉层薄.前肠与中肠交界处有突出的胃盲囊.中肠长且粗大,内有围食膜,肠壁细胞较大,外层为发达的环肌和纵肌.后肠上皮细胞内陷很深.6根念珠状的马氏管位于中、后肠分界处.  相似文献   

4.
The development of the foregut structure and the digestive function of the decapods Litopenaeus vannamei, Sesarma rectum and Callichirus major larvae and post larvae were examined. The protozoeal foregut of L. vannamei is simple, lacking a cardiopyloric valve and bearing a rudimentary filter press. In mysis, the filter press is more developed. In the juvenile stage, grooves and a small lateral tooth arise. In S. rectum, the foregut has a functional cardiopyloric valve and a filter press. The megalopal and juvenile stages of this species have a gastric mill similar to those in adult crabs. In C. major, the foregut of the zoeae is specialized, with the appearance of some rigid structures, but no gastric mill was found. Calcified structures are observed in the megalopae and they become more developed in the juvenile stage. The results support suppositions, previously reported in other studies, that feeding behavior of each larval and postlarval stage is directly related to the morphological characteristics of the foreguts.  相似文献   

5.
The spiny lobster Panulirus argus has a life cycle consisting of a long-term (~9-12 months) planktonic larval period with 11 larval stages (the phyllosoma), a short (<1 month?) planktonic-to-benthic transitional postlarval stage (the puerulus), and benthic juvenile and adult phases. The mouthparts and foregut during these stages were examined and described by means of scanning electron microscopy (SEM) in an investigation of the species' developmental morphology, diet, and ecology. The phyllosoma mouthparts close to the esophagus are the labrum, mandibles, paragnaths, and first maxillae. The second maxillae and first and second maxillipeds are increasingly distant from the esophagus as the larva develops. The pair of asymmetrical mandibles bear many teeth and spines, and the molar processes form what appears to be an intricate toothed shear. The mandibles remain similar throughout the phyllosoma stages. During the molt into the puerulus, the mouthparts are greatly changed, and the second maxilla and the three maxillipeds join the other mouthparts near the esophagus. However, the transformation appears incomplete, and many of the mouthparts are not fully formed until the molt to juvenile completes their development. The phyllosoma foregut lacks a gastric mill and has but one chamber. In addition, the first two stages lack a gland filter. During the molt to puerulus, the foregut is greatly changed and subsequently is similar to typical decapod foreguts in having an anterior cardiac and posterior pyloric chamber. Only rudimentary internal armature is present. Following the molt to juvenile, the foregut is quite similar to that of the adult, which exhibits a substantial gastric mill. The 11 phyllosoma stages were separated into two groups (group A = stages 1-5, group B = stages 6-11) on the basis of changes in both mouthpart and foregut morphology. The puerulus has never been observed to feed. Nothing was observed in our investigations that would prevent feeding, though both mouthpart and foregut development appeared incomplete. The mouthpart and foregut structures of larval, postlarval and juvenile P. argus differ widely, possibly reflecting the extreme modifications for different habitats found among these life phases.  相似文献   

6.
The morphology of the foregut of the Say's mud crab Dyspanopeus sayi was described in adults and larvae. The ossicle system was illustrated based on a staining method with Alizarin-Red. The gastric teeth and cardio-pyloric valve were dissected and examined using optical and scanning electron microscopy. In the adults, the morphology of ossicles and gastric teeth of D. sayi is very similar to the related species Rhithropanopeus harrisii. The foregut of first zoea (ZI) presented a functional cardio-pyloric valve while the filter press was lacking. The filter press was observed in the pyloric chamber from ZII. The most significant changes in morphology take place after metamorphosis from ZIV to megalopa, including the occurrence of the gastric mill. The organization and morphology of many megalopal foregut ossicles are recognizable in the adult phase, although the morphology of the gastric teeth differs from the morphology of adults. A correlation of gastric mill structures with food preferences and their contribution to the phylogeny are briefly discussed.  相似文献   

7.
Gravid females of Penaeus semisulcatus were spawned in the laboratory by natural means. The embryos were documented and the larvae were reared from hatching to postlarval stage at 28.2–30.0 °C and 33.5–34.5 g kg−1 salinity for about 10 days (223 h 55 min). Six naupliar stages, three protozoea stages, three mysis stages and the first postlarval stage were described and illustrated. The larvae were fed only with microalgae Tetraselmis tetrathele and Chaetoceros gracilis from first protozoea until the second mysis, with about 90% survival rate; from the third mysis until the first postlarva they were fed with similar microalgae coupled with rotifer Brachionus plicatilis and Artemia nauplii. The embryonic and larval stages of P. semisulcatus are generally similar to those of other closely related species in the family Penaeidae, such as Melicertus canaliculatus, Fenneropenaeus merguiensis, and Marsupenaeus japonicus, except for the size and structure of diagnostic characters, setation of appendages and duration of metamorphoses. The change in the feeding habit during ontogeny was related to morphological transformation of the feeding apparatus of larvae and postlarvae. This paper is the first comprehensive and complete account of the early developmental stages of P. semisulcatus.  相似文献   

8.
A proposed method to determine chronological age of crustaceans uses putative annual bands in the gastric mill ossicles of the foregut. The interpretation of cuticle bands as growth rings is based on the idea that ossicles are retained through the moult and could accumulate a continuous record of age. However, recent studies presented conflicting findings on the dynamics of gastric mill ossicles during ecdysis. We herein study cuticle bands in ossicles in four species of commercially important decapod crustaceans (Homarus gammarus, Nephrops norvegicus, Cancer pagurus and Necora puber) in different phases of the moult cycle using dissections, light microscopy, micro-computed tomography and cryo-scanning electron microscopy. Our results demonstrate that the gastric mill is moulted and ossicles are not retained but replaced during ecdysis. It is therefore not plausible to conclude that ossicles register a lifetime growth record as annual bands and thereby provide age information. Other mechanisms for the formation of cuticle bands and their correlation to size-based age estimates need to be considered and the effect of moulting on other cuticle structures where ‘annual growth bands’ have been reported should be investigated urgently. Based on our results, there is no evidence for a causative link between cuticle bands and chronological age, meaning it is unreliable for determining crustacean age.  相似文献   

9.
The domestic mite species Blomia tropicalis is an important indoor allergen source related to asthma and other allergic diseases in tropical and subtropical regions. Here, we describe the alimentary canal of B. tropicalis with the particular application of three-dimensional reconstruction technology. The alimentary canal of B. tropicalis resembles the typical acarid form consisting of the cuticle-lined foregut and hindgut separated by a cuticle-free midgut. The foregut is divided into a muscular pharynx and an esophagus. The midgut is composed of a central ventriculus, two lateral caeca, a globular colon and a postcolon with two tubiform postcolonic diverticula. The most common cells forming the epithelium of ventriculus and caeca are squamous and cuboidal. The globular cells contain a big central vacuole in the posterior region of the caeca. The epithelium of the colon and postcolon has significantly longer microvilli. The anal atrium is a simple tube with flattened epithelial cells. The spatial measurements of the three-dimensional model suggest that the paired caeca and central ventriculus occupy 55.1 and 34.6%, respectively, of the total volume of the alimentary canal and may play the key role in food digestion. J. Wu and F. Yang contributed equally.  相似文献   

10.
韭菜迟眼蕈蚊幼虫消化系统的解剖学和组织学   总被引:2,自引:0,他引:2  
本利用石蜡切片对韭菜迟眼蕈蚊幼虫其消化系统的组织学进行了研究。结果表明,幼虫的消化道无特殊变异,但中肠亚端部的一对胃盲囊长而发达,是消化道的突出特征。中肠和胃盲囊不同部位的细胞学特点有明显差异。根据中肠细胞形状及其分布将中肠分为4个区域,对中肠不同区域的细胞学特点进行了描述。  相似文献   

11.
Abstract. Classical studies of horseshoe crab development have provided relatively little information about the earliest stages, and the contribution of yolk cells and yolk nuclei—a deficiency due in large part to the difficulty of preparing the eggs and embryos for sectioning. Using newly developed histological resins, we show that the yolk nuclei undergo a series of changes during embryogenesis, before cellularizing and forming the midgut epithelium during the first larval stage. The digestive diverticulum forms in a 2-step process. A mesodermally derived lamina divides the yolk mass into distinct lobes, defining the boundaries of the digestive caeca. The yolk nuclei then cellularize to form the midgut epithelium.  相似文献   

12.
The stomach of decapods is a complex organ with specialized structures that are delimited by a cuticle. The morphology and ontogeny of the stomach are largely described, but few studies have focused on the morphology of its cuticle. This study examined the morphology of the stomach cuticle of cardiac sacs, gastric mill ossicles, cardio-pyloric valve and pyloric filters, and during various stages (zoea I and II, megalopa, first juvenile, and adult) of the common spider crab Maja brachydactyla using dissection, histology and transmission electron microscopy. The results show that cuticle morphology varies among structures (e.g., cardiac sacs, urocardiac ossicle, cardio-pyloric valve, pyloric filters), within a single structure (e.g., different sides of the urocardiac ossicle) and among different life stages. The cuticle during the larval stages is very thin and the different layers (epicuticle, exocuticle, and endocuticle) are infrequently distinguishable by histology. Major changes during larval development regarding cuticle morphology are observed after the molt to megalopa, including the increment in thickness in the gastric mill ossicles and cardio-pyloric valve, and the disappearance of the long thickened setae of the cardio-pyloric valve. The cuticle of all the stomach structures in the adults is thicker than in larval and juvenile stages. The cuticle varies in thickness, differential staining affinity and morphology of the cuticle layers. The structure–function relationship of the cuticle morphology is discussed.  相似文献   

13.
External and internal feeding structures of the pelagic final phyllosoma, the transitional puerulus, and the benthic juvenile Western Rock Lobster, Panulirus cygnus, were studied by means of scanning electron microscopy. The study revealed that the external feeding structures of phyllosomata are well equipped for capture and mastication of food. The foregut, however, is not clearly divided into pyloric and cardiac regions and a gastric mill is absent, although a comb row and gland filter are present. Juveniles, on the other hand, have a well-developed gastric mill and gastric teeth, and a cardiopyloric valve separates the foregut into cardiac and pyloric regions. External mouthparts of juveniles are suitable for mastication of solid food particles and bear numerous setae. In contrast, external mouthparts of pueruli are largely non-setose. Furthermore, although the foregut is differentiated into pyloric and gastric regions and a gland filter and comb row are present, a functional gastric mill is absent during the puerulus stage. Absence of such structures indicates that the puerulus may be a non-feeding stage. It is postulated that absence of (or reduced) feeding may be a response to an increased risk of predation rather than a result of the considerable morphological changes taking place during the transition from a planktonic to a benthic lifestyle, as has been previously proposed. © 1994 Wiley-Liss, Inc.  相似文献   

14.
This study examined the biochemical characteristics of α‐amylase and hormonal (adipokinetic hormone: AKH) stimulation of α‐amylase activity in the cockroach (Periplaneta americana) midgut. We applied two AKHs in vivo and in vitro, then measured resultant amylase activity and gene expression, as well as the expression of AKH receptor (AKHR). The results revealed that optimal amylase activity is characterized by the following: pH: 5.7, temperature: 38.4 °C, Km (Michaelis–Menten constant): 2.54 mg starch/mL, and Vmax (maximum reaction velocity): 0.185 μmol maltose/mL/min. In vivo application of AKHs resulted in significant increase of amylase activity: by two‐fold in the gastric caeca and 4–7 fold in the rest of the midgut. In vitro experiments supported results seen in vivo: a 24‐h incubation with the hormones resulted in the increase of amylase activity by 1.4 times in the caeca and 4–9 times in the midgut. Further, gene expression analyses reveal that AKHR is expressed in both the caeca and the rest of the midgut, although expression levels in the former were 23 times higher than levels in the latter. A similar pattern was found for the amylase (AMY) gene. Hormonal treatment did not affect the expression of either gene. This study is the first to provide evidence indicating direct AKH stimulation of digestive enzyme activity in the insect midgut, supported by specific AKHR gene expression in this organ.  相似文献   

15.
This article reviews the mechanical processes associated with digestion in decapod crustaceans. The decapod crustacean gut is essentially an internal tube that is divided into three functional areas, the foregut, midgut, and hindgut. The foregut houses the gastric mill apparatus which functions in mastication (cutting and grinding) of the ingested food. The processed food passes into the pyloric region of the foregut which controls movement of digesta into the midgut region and hepatopancreas where intracellular digestion takes place. The movements of the foregut muscles and gastric mill are controlled via nerves from the stomatogastric ganglion. Contraction rates of the gastric mill and foregut muscles can be influenced by environmental factors such as salinity, temperature, and oxygen levels. Gut contraction rates depend on the magnitude of the environmental perturbation and the physiological ability of each species. The subsequent transit of the digesta from the foregut into the midgut and through the hindgut has been followed in a wide variety of crustaceans. Transit rates are commonly used as a measure of food processing rates and are keys in understanding strategies of adaptation to trophic conditions. Transit times vary from as little as 30 min in small copepods to over 150 h in larger lobsters. Transit times can be influenced by the size and the type of the meal, the size and activity level of an animal and changes in environmental temperature, salinity and oxygen tension. Ultimately, changes in transit times influence digestive efficiency (the amount of nutrients absorbed across the gut wall). Digestive efficiencies tend to be high for carnivorous crustaceans, but somewhat lower for those that consume plant material. A slowing of the transit rate allows more time for nutrient absorption but this may be confounded by changes in the environment, which may reduce the energy available for active transport processes. Given the large number of articles already published on the stomatogastric ganglion and its control mechanisms, this area will continue to be of interest to scientists. There is also a push towards studying animals in a more natural environment or even in the field and investigation of the energetic costs of the components of digestion under varying biotic and environmental conditions will undoubtedly be an area that expands in the future.  相似文献   

16.
The role of the adipokinetic hormone (AKH) in the control of protease, amylase and lipase activities is examined using the cockroach Periplaneta americana and the fruit fly Drosophila melanogaster as model species. The effects of Peram‐CAH‐I and ‐II on the activity of cockroach digestive enzymes in the gastric caeca and midgut are measured both in vivo and in vitro. The results show the activity of proteases, amylases and lipases in both parts of the gut: amylase activity is higher in the gastric caeca than in the midgut; lipase activity presents the opposite trend; and protease activity is similar in both organs. The applied hormones stimulate the activity of all digestive enzymes, although this stimulation is not uniform; AKHs affect enzymes selectively, and in some cases unequally, in the gastric caeca and midgut. No substantial differences between Peram‐CAH‐I and ‐II stimulation are recorded. The in vitro results demonstrate that AKH stimulates digestive enzyme activity directly. In agreement with the cockroach results, enzymatic activity in D. melanogaster larvae producing nonfunctional AKH is lower than that in the larvae with ectopically expressed Akh gene, where enzyme activity reaches or even exceeds that of the controls. Overall, the results demonstrate the active role of AKHs in the stimulation of digestive enzyme activity in insects.  相似文献   

17.
《Gene》1998,222(2):195-201
Kraken, a novel Drosophila gene isolated from a 4–8-h-old Drosophila embryo cDNA library, shows homology to a family of serine hydrolases whose common feature is that they all catalyse breakage of substrates with a carbonyl-containing group. It is a single-copy gene with at least two introns and maps to position 21D on polytene chromosomes. kraken is a member of a conserved gene family. Messenger RNA of kraken is expressed ubiquitously in early embryogenesis. Later, it is concentrated in the foregut and the posterior midgut primordium. Towards the end of embryogenesis, expression of kraken is confined to the gastric caeca. During the third-instar larval stage, kraken is expressed at low levels in the gastric caeca and parts of the gut, and at higher levels in the fat body. We suggest a role for Kraken in detoxification and digestion during embryogenesis and larval development.  相似文献   

18.
Penaeoidean shrimp pleonal muscle is a valuable economic resource worldwide, but little is known of its development during larval stages. The development of pleonal muscle in Penaeus (Litopenaeus) vannamei was studied by rhodamine-phalloidin staining and laser-scanning confocal microscopy. Dorsal pleonal muscle was first evident at the protozoea I stage while ventral pleonal muscle was present by the protozoea II stage. Identifiable ventral pleonal muscles were evident by the protozoea III stage and all ventral muscle types were present in the mysis I. The tail flex response began at the mysis stage and growth of existing pleonal muscles continued. The pleopods formed during the mysis stages, with coxal and basis muscles developed by mysis III. The pleopods became functional beginning with the first post-larval stage. We conclude that the pleonal muscle pattern of P. vannamei larvae is similar to that of adult Penaeus setiferus, and that homologous muscles are present. The major formation of dorsal pleonal muscles occurs during the protozoea II stage, while significant development of ventral pleonal muscles occurs during the protozoea III stage.  相似文献   

19.
20.
The alimentary tract of barnacles is made up of cuticle-lined foregut and hindgut with an intervening U-shaped midgut associated anteriorly with a pair of pancreatic glands and perhaps midgut caeca. Epithelial salivary glands secrete acid mucopolysaccharide, glycoprotein or both. Cells of all the midgut regions are capable of absorption which is carried out mainly by the anterior midgut and caeca. Midgut cells of Balanus balanoides (L.) show a seasonal variation in the distribution of intracellular lipid droplets. Midgut cells rest on an elastic basal lamina and secrete a peritrophic membrane which contains mucopolysaccharide and protein. Cells of the stratum perintestinale connect with the midgut epithelial cells via cell processes which probably translocate absorbed materials. Glycoprotein globules and lipid droplets accumulate in the body parenchyma of B. balanoides and are transported to the ovaries to form yolk (glycolipovitellin). The pancreatic gland cells of all barnacles are active secretory cells secreting proteinaceous material (probably digestive enzymes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号