首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to investigate the effect of follicle-stimulating hormone (FSH) on nuclear maturation, fertilization, and early embryonic development of in-vitro-matured bovine oocytes and to find out whether this effect is exerted through a cyclic adenosine monophosphate (cAMP) signal transduction pathway. In addition the effect of the combination of FSH and growth hormone (GH) on subsequent cleavage and embryo development was studied. Therefore cumulus oocyte complexes were cultured in the presence of FSH (0.05 IU/ml) and the nuclear stage of the oocytes was assessed using 4,6-diamino-2-phenyl-indole (DAPI) staining either after 16, 20, or 24 hr of in vitro maturation or 18 hr after the onset of fertilization. To assess the effect of FSH and the combination of FSH and GH added during in vitro maturation on the developmental capacity of the oocytes, cumulus oocyte complexes were incubated in the presence of either FSH (0.05 IU/ml) or FSH (0.05 IU/ml) plus GH (100 ng/ml) for 22 hr, followed by in vitro fertilization and in vitro embryo culture. To investigate whether FSH-induced oocyte maturation is exerted through the cAMP pathway, cumulus oocyte complexes were cultured in M199 supplemented with FSH (0.05 IU/ml) and H-89 (10 μM), a specific inhibitor of cAMP-dependent protein kinase A. After 16 hr of culture, the proportion of oocytes in metaphase II (MII) stage was determined. Cultures with GH and without FSH and H-89 served as controls. The percentage of MII oocytes at 16 hr of incubation was significantly lower (P < 0.001) in the presence of FSH than in the control group, while the number of MII oocytes beyond 20 hr did not differ from the control group. That points to a transient inhibition of nuclear maturation by FSH. Opposite to FSH, addition of GH during in vitro maturation significantly enhanced the number of MII oocytes after 16 hr of culture (P < 0.001), which points to the acceleration of nuclear maturation by GH. Addition of FSH during in vitro maturation significantly enhanced the proportion of normal fertilized oocytes, cleaved embryos and blastocysts (P < 0.001). Similarly, addition of GH during in vitro maturation significantly enhanced the number of cleaved embryos and blastocysts (P < 0.001); however, in vitro maturation in the presence of GH and FSH did not result in an extra enhancement of the embryo development. Both the inhibition of nuclear maturation by FSH and its acceleration by GH was completely abolished by H-89. In conclusion, in vitro maturation of bovine oocytes in the presence of FSH retards nuclear maturation via a cAMP-mediated pathway, while it enhances fertilizability and developmental ability of the oocytes. Supplementation of GH and FSH during in vitro maturation did not result in an extra increase in the number of blastocysts following in vitro fertilization and in vitro embryo culture. Mol. Reprod. Dev. 51:339–345, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Experiments were performed to determine if elevation of cumulus cell cAMP results in an increase in mouse oocyte cAMP while the heterologous gap junctions were intact. Both follicle-stimulating hormone (FSH) and cholera toxin induced a marked increase (>20-fold) in intracellular cAMP in isolated mouse cumulus cell-oocyte complexes in the presence of 3-isobutyl-1-methyl xanthine (IBMX). Concomitantly, both FSH and cholera toxin transiently inhibited resumption of meiosis of cumulus cell-enclosed but not denuded oocytes. The transient nature of the inhibitory effect produced by either FSH or cholera toxin was correlated with the cAMP level in the cumulus cell-oocyte complex. The inhibitory effect, however, was apparently not due to movement of cumulus cell cAMP to the oocyte via the functional heterologous gap junctions between cumulus cells and the oocyte. Radioimmunoassay of cAMP in oocytes free of attached cumulus cells or cumulus cell-enclosed oocytes exposed to either FSH or cholera toxin revealed that both groups of oocytes contained similar amounts of cAMP (about 0.14 fmole/oocyte). Metabolic labeling of cumulus cell-oocyte complexes with [3H]adenosine followed by incubation with either FSH or cholera toxin resulted in a marked increase in the amount of radiolabeled cAMP compared to that in unstimulated complexes. However, similar amounts of radiolabeled cAMP were found in oocytes derived from either stimulated or unstimulated complexes. Thus, we have not detected, using two methods of assay, that increasing the cAMP content of the cumulus cells results in any increase in the cAMP content of the oocyte. The apparent compartmentalization of cumulus cell cAMP elevated in response to either FSH or cholera toxin was not due to disruption of intercellular communication between the two cell types during the incubation; metabolic cooperativity was present between the two cell types and molecules of similar molecular weight and charge relative to that of cAMP were rapidly equilibrated between the two cell types. Testosterone potentiated the FSH/cholera toxin-induced transient inhibition of maturation of cumulus cell-enclosed oocytes. However, testosterone did not increase cAMP accumulation produced by either FSH or cholera toxin, decrease the rate of cAMP degradation, or promote movement of cumulus cell cAMP to the oocyte. Since cAMP elevated in response to FSH or cholera toxin appeared to be compartmentalized to cumulus cells and since neither FSH, cholera toxin, nor testosterone inhibited resumption of meiosis in denuded oocytes, it appears that the inhibitory effect promoted by FSH or cholera toxin is directly mediated by an agent other than cAMP, although cAMP generation is required for its action and that cumulus cells mediate the inhibition. These results are discussed in terms of a possible role of cAMP and steroids in regulating maturation in the mouse.  相似文献   

3.
Mouse oocytes suppress follicle-stimulating hormone (FSH)–induced luteinizing hormone receptor (LHR) messenger ribonucleic acid (mRNA) expression in cultured granulosa cells. The objective of this study was to assess the mechanism by which oocytes suppress FSH-induced LHR expression. The effect of cumulus cell–denuded, germinal-vesicle-stage oocytes, isolated from antral follicles, on FSH-induced cyclic adenosine monophosphate (cAMP) production by cultured granulosa cells was determined by radioimmunoassays. In addition, the effect of oocytes on 8Br-cAMP–induced LHR mRNA steady-state expression by granulosa cells was assessed by RNase protection assays. Oocytes had no detectable effect on FSH-induced cAMP production. However, oocytes dramatically suppressed 8Br-cAMP–induced LHR mRNA steady-state expression by granulosa cells. It was concluded that the mechanism by which oocytes suppress FSH-induced steady-state expression of LHR mRNA is not by inactivating FSH, preventing functional interactions of FSH with its granulosa cell receptors, or by interfering with the signal-transduction mechanisms required for FSH-dependent cAMP production. In addition, since oocytes suppressed the 8Br-cAMP–induced increase in steady-state expression of mRNA for LHR, oocyte-derived factors probably suppress expression by acting downstream of FSH-induced elevation of granulosa cell cAMP. Mol. Reprod. Dev. 49:327–332, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
We have reported that in vitro treatment with follicle-stimulating hormone (FSH) delays by about 3 h spontaneous meiotic resumption in cumulus cell-enclosed mouse oocytes. In the present paper we show that the temporary meiotic block is accompanied by a transient increase of cAMP concentration in the oocyte. In cumulus cell-oocyte complexes stimulated with 1 microgram/ml FSH, cAMP significantly increases within 1 h both in the whole complex (from a basal value of 1.9 +/- 0.2 to 169 +/- 13 fmol) and in the enclosed oocyte (from 0.9 +/- 0.2 to 2.4 +/- 0.2 fmol), then progressively decreases to basal values. Stimulation by FSH does not cause any cAMP increase in denuded oocytes. As the concentration of cAMP in the cells decreases, the percentage of oocytes escaping the meiotic block imposed by FSH increases. If the complexes are cultured in the presence of 1 microgram/ml FSH plus 1 mM isobutyl-1-methylxanthine (1BMX), cAMP concentration increases approximately 250-fold in the complex, and 10-fold in the enclosed oocyte; the level of cAMP in the oocyte drops very rapidly (50% degradation in less than 2 min) if the oocyte is then transferred to IBMX-free medium. The data are discussed in terms of the possible role of cAMP transfer from cumulus cells to the oocyte in the regulation of meiotic progression in mouse oocytes.  相似文献   

5.
In sufficient concentration, dibutyryl cAMP (DBC) prevents the spontaneous in vitro maturation of mouse oocytes. The effects of luteinizing hormone (LH) and follicle stimulating hormone (FSH) on this inhibition were tested in an oil-free chamber-slide culture system. Mouse oocytes devoid of cumulus cells were incubated in the presence of DBC and/or gonadotropins. Oocytes cultured with follicle cells were similarly treated. Whether follicle cells were present or absent, DBC (100 or 500 mug/ml) prevented germinal vesicle breakdown in more than 95% of the oocytes cultured. Neither LH nor FSH in a wide range of concentrations acted directly on the oocytes or indirectly through the follicle cells to initiate maturation in oocytes incubated with 100 mug DBC/ml. The combination of LH (5 mug/ml) and FSH (10 mug/ml) was also ineffective in overcoming the block induced by either 100 or 50 mug DBC/ml. Maturation of oocytes in each of the DBC-free LH or FSH treatments was comparable to that occurring in control medium which did not contain exogenous gonadotropins or DBC. It was concluded that cultured oocytes treated with DBC are not a satisfactory model for studying the steps by which gonadotropins trigger the resumption of meiosis in mammalian oocytes.  相似文献   

6.
The effects of follicle-stimulating hormone (FSH) and cyclic guanosine 3',5'-monophosphate (cGMP) on spontaneous oocyte maturation and cyclic adenosine 3',5'-cumulus-monophosphate phosphodiesterase activity (cAMP-PDE) were evaluated by using cumulus-oocyte complexes (COCs) from proestrous hamsters. After a 2-h incubation period, FSH (10 micrograms/ml and 1 microgram/ml) reduced the percentage of maturing oocytes compared with controls. This inhibition was partially overcome when cGMP-elevating agents (8-Bromo-cGMP, atrial natriuretic factor or sodium nitroprusside) were included with FSH. After a 3-h period, incubation with FSH and cGMP-elevating agents alone increased the maturation rate above that of the controls. The accelerating effects of cGMP on the maturation rate appear to be caused by its capacity to lower cAMP levels. Combining FSH (1 microgram/ml) with sodium nitroprusside reduced cAMP levels in COCs (not oocytes) compared with groups exposed to FSH alone. FSH increased cGMP levels in COCs in a dose- and time-dependent manner. Both FSH and cGMP-elevating agents produced a dose-dependent increased cAMP-PDE activity in COCs (not oocytes) following a 2-h incubation period. Together, these results suggest that, in vivo, FSH stimulates a rise in both cAMP and cGMP in COCs. While the increase in cAMP may be the initial meiotic trigger, cGMP may serve to subsequently lower cAMP by activating cAMP-PDE and thus permit the maturational process to continue.  相似文献   

7.
We have previously shown that the type I diabetic condition significantly alters meiotic regulation in mouse oocytes. In the present study, possible physiological deficiencies underlying such meiotic dysfunction were examined in oocyte-cumulus cell complexes (OCC) from type I diabetic mice. Whereas the diabetic condition did not affect glycolysis or the tricarboxylic acid cycle, the increased flux of glucose through the pentose phosphate pathway in response to FSH treatment was suppressed. De novo purine synthesis was also compromised, and ATP levels were reduced in freshly isolated OCC. Additionally, diabetes resulted in a reduction in FSH-mediated cAMP synthesis. The responsiveness of the oocyte to cAMP was also affected; fewer oocytes were induced to resume maturation after a stimulatory pulse with cAMP analogs. Meiotic induction triggered by FSH was significantly reduced, but that stimulated by phorbol ester or epidermal growth factor was affected to a much lesser extent. In addition to metabolic deficiencies, the cell-cell communication between the oocyte and the cumulus cells was reduced in diabetic mice as determined by coupling assays. Thus, numerous physiological parameters are affected by type I diabetes, and these changes may collectively contribute to altered meiotic regulation.  相似文献   

8.
We have developed an assay that can detect relative changes in the amount of a non-cAMP inhibitor of maturation present in cumulus cells (Eppig et al., 1983, Dev. Biol., 100:39-49). Using this assay in which accelerated maturation of a group of treated cumulus cell-oocyte complexes relative to untreated complexes indicates a decrease in the amount of inhibitor, results of the experiments described here suggest a possible relationship between elevation of cAMP levels and subsequent decreased amounts of a non-cAMP inhibitor. Mouse oocytes obtained from cumulus cell-oocyte complexes treated with luteinizing hormone (LH) resumed meiosis prior to oocytes obtained from untreated complexes; the degree of acceleration of maturation was dependent on LH concentration. A similar result was obtained with follicle-stimulating hormone (FSH). Correlated with LH- or FSH-acceleration of maturation was an LH- or FSH-induced elevation of cumulus cell cAMP levels. Inhibiting LH-induced elevation of cumulus cell cAMP levels inhibited LH-induced acceleration of maturation. An initial incubation of complexes in medium containing dibutyryl cAMP (dbcAMP) also promoted acceleration of maturation. In contrast, maturation of denuded oocytes was not altered by treatment with either LH, FSH, or dbcAMP. Complexes initially incubated in dbcAMP-containing medium still demonstrated acceleration of maturation after a subsequent 2 h incubation in dbcAMP-free medium. Relative to untreated complexes, none of these treatments disrupted intercellular communication between cumulus cells and the oocyte. Elevating follicle cAMP levels with cholera toxin induced maturation of follicle-enclosed oocytes when cumulus cell-oocyte coupling was still fully maintained. These results are interpreted to indicate that gonadotropin-mediated acceleration of maturation is via a cAMP-dependent reduction in the level of a maturation inhibitor present in granulosa/cumulus cells.  相似文献   

9.
The effects of the putative maturation inhibitor in porcine follicular fluid on gonadotropinstimulated reversal of cyclic adenosine monophosphate (cAMP)-maintained meiotic arrest in mouse oocytes in vitro were assessed in this study. When cumulus cell-enclosed oocytes were cultured in a suboptimal inhibitory concentration of dibutyryl cAMP (dbcAMP), the effect of follicle-stimulating hormone (FSH) on oocyte maturation was initially inhibitory at 3 hr, but stimulatory at 6 hr. Supplementation of the medium with an ultrafiltrate of porcine follicuiar fluid (PM10-filtrate) completely suppressed FSH-promoted reversal of inhibition at 6 hr. Charcoal extraction eliminated this effect of the PM10-filtrate. FSH reversed the inhibition of maturation of cumulus cell-enclosed oocytes maintained by a high concentration of dbcAMP and suboptimal concentrations of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl xanthine (IBMX), during a 21–22-hr culture period. However, the effect of a completely inhibitory concentration of IBMX was not reversed by gonadotropin. A component of serum was also found to inhibit FSH reversal of dbcAMP-maintained meiotic arrest, and this activity was removed by charcoal extraction. In addition, when oocytes were cultured in medium containing a suboptimal concentration of dbcAMP plus a low molecular weight fraction (< 1,000) of porcine follicular fluid, porcine serum, or fetal bovine serum, a synergistic inhibition of maturation was observed. Experiments with highly purified gonadotropins revealed that reversal of dbcAMP-maintained meiotic arrest occurred only in response to FSH; neither highly purified luteinizing hormone nor human chorionic gonadotropin could mimic this action of FSH. Also, this effect was mediated by the cumulus cells, since FSH could not reverse dbcAMP-maintained meiotic arrest in denuded oocytes. Furthermore, elevating cAMP levels in denuded oocytes augmented, rather than reversed, the inhibitory action of dbcAMP on oocyte maturation. These data therefore suggest that dbcAMP- or IBMX-maintained meiotic arrest in vitro is reversed by an FSH-stimulated, cAMP-dependent process mediated by the cumulus cells and demonstrate that a factor present both in follicular fluid and serum prevents this action of the gonadotropin.  相似文献   

10.
A soluble factor(s) produced by fully grown oocytes is essential, together with follicle stimulating hormone (FSH), to stimulate in vitro hyaluronic acid (HA) synthesis by mouse cumulus cells (CCs). The stability of the response to this stimulus by CCs in culture was investigated. The data showed that preculture for 8 hr in basal medium reduced to approximately 30% the ability of CCs to synthesize HA in response to FSH or dibutyryl cyclic AMP (Bt2cAMP) and soluble oocyte factor(s). However, if CCs were precultured for the same period of time as intact cumulus cell-oocyte complexes, or in the presence of fully grown oocytes, or in medium conditioned by fully grown oocytes, their ability to synthesize HA was 75-95% preserved. In vitro stimulation of dermatan sulfate (DS) synthesis by CCs does not require oocyte factors and is induced by FSH or Bt2cAMP treatment alone. However, the preservation of such activity, like that of HA synthesis, depended on the presence of a soluble oocyte factor(s) during preculture. The presence of isolated oocytes or of oocyte-conditioned medium also prevented the spreading of CCs in culture. However, inhibiting CC spreading by culture on agar-coated plates or in serum-free medium did not preserve their HA or DS synthetic activity, thus suggesting that the two oocyte actions on CCs are independent. Growing oocytes were unable both to induce HA synthesis in freshly isolated CCs stimulated with FSH and to preserve the ability to synthesize HA and DS in 8-hr precultured CCs. The results suggest that the stability of the differentiated state of mouse CCs in vitro depends upon continued exposure to a soluble factor(s) produced by fully grown oocytes.  相似文献   

11.
The induction of multiple follicular growth during ovarian stimulation for in vitro fertilization (IVF) implies follicular asynchrony. As a consequence oocytes of different quality are obtained. The maturity and fertilizability of oocytes cannot sufficiently be predicted by their morphological appearance under the light microscope. Looking for additional parameters of oocyte quality, FSH, hCG, estradiol (E2), progesterone (P), testosterone (T), prolactin (PRL) and cAMP were analysed in human follicular fluid (FF) containing a morphologically mature oocyte. The evaluation of the relationship between FF values and oocyte fertilization showed the following results: no differences of FSH, hCG, E2, P and T concentrations in FF between the group of fertilized and not fertilized ova. However, significant differences were detected for PRL and cAMP. In FF of fertilized oocytes PRL content was higher (38.8 +/- 2.2 vs 29.7 +/- 2.3 ng/ml, P less than 0.01) and cAMP level was lower (32.7 +/- 1.9 vs 59.8 +/- 7.4 pmol/ml, P less than 0.01) as compared with FF of unfertilizable oocytes. In conclusion PRL- and cAMP concentration of FF might be additional parameters of oocyte maturation and fertilizability.  相似文献   

12.
The temporal changes of metabolic coupling between the mouse oocyte and the cumulus cells which follow hCG injection in vivo and FSH treatment in vitro were studied by measuring what fraction of [3H]uridine taken up by cumulus cells was transferred to the oocyte. Meiotic resumption and a partial coupling loss (to 35% of the initial value) spontaneously occurred in cumuli cultured in control medium. The addition of 1 microgram FSH/ml in vitro, or the injection of hCG in vivo caused a delay of about 3 h in both phenomena and a near total uncoupling, together with cumulus expansion. FSH caused uncoupling even if cumulus expansion was prevented by the addition of heparin. The presence of 2 mM-dcAMP prevented meiotic resumption in cumulus-enclosed oocytes and maintained a high level of co-operation for at least 6 h. The slow uncoupling observed at later times was due to cumulus expansion, because it was totally prevented by heparin. We suggest that metabolic co-operation with the cumulus oophorus and meiotic resumption are both regulated by FSH through variations of intracellular levels of cAMP.  相似文献   

13.
Mucification (or expansion) of the cumulus cells surrounding the oocyte is thought to depend on the direct action of gonadotropins in stimulating production and deposition of hyaluronic acid (HA) in the extracellular matrix. We now report that the oocyte is essential for this process. Either follicle-stimulating hormone (FSH) at 1 micrograms/ml or dibutyryl cAMP at 2 mM induces mucification of intact cumulus cell-oocyte complexes (COCs) in vitro, but fails to stimulate mucification of isolated cumulus cells. HA synthesis by FSH-stimulated cumulus cells is only approximately 3.5% of the value achieved by FSH-stimulated COCs. Isolated oocytes cultured with or without FSH do not synthesize detectable amounts of HA but induce isolated cumulus cells to increase HA synthesis approximately 13-fold in cocultures with FSH. Medium conditioned by isolated oocytes for 5 hr induces nearly the same level of HA synthesis by cumulus cells under the same culture conditions. FSH also stimulates cumulus cells to increase synthesis of dermatan sulfate proteoglycans (DS-PGs) approximately 3-fold, but this stimulation does not depend upon the presence of oocytes. The results indicate that oocytes produce a soluble factor(s) essential in combination with FSH to stimulate HA, but not DS-PG, synthesis by cumulus cells in vitro and that this factor(s) acts independently or downstream from the FSH-induced formation of cAMP.  相似文献   

14.
To investigate the endocrine factors in Japanese monkeys (Macaca fuscata) responsible for the suppression of the estrous cycle during the first reproductive season after delivery (150–360 days postpartum), peripheral blood was taken to measure plasma concentrations of follicle stimulating hormone (FSH), luteinizing hormone (LH), progesterone, estradiol‐17β, immunoreactive (ir)‐inhibin, and cortisol. The results demonstrated that during the breeding season of lactating Japanese monkeys, circulating concentrations of FSH (1.7–2.7 ng/ml), LH (308.5–461.0 pg/ml), estradiol‐17β (<62.6 pg/ml), and progesterone (145.0–453.0 pg/ml) remained low and were similar to the nadir levels observed during both the normal menstrual cycles and the nonbreeding season. Concentrations of ir‐inhibin, which is secreted from both follicles and corpus luteum in female Japanese monkeys, were also low (300.5–585.0 pg/ml). This strongly suggests that no follicular development occurs during lactation. Serum concentrations of cortisol (261.0–519 ng/ml) were higher during lactation than during the nonbreeding season. Since babies were often seen suckling their mothers during the study, the results indicate that the increased cortisol levels were associated with suckling‐induced secretion of corticotrophin‐releasing hormone (CRH) and adrenocorticotropic hormone (ACTH). The results of this study indicate that a long period of postpartum infertility in lactating Japanese monkeys, with apparent inhibition of follicle growth and anovulation, is due to weak gonadotropin stimulation, which may occur as the result of a suckling stimulus. Zoo Biol 22:65–76, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

15.
The hypothesis that cumulus cells inhibit oocyte maturation by a cAMP-dependent process was tested (R. M. Schultz, R. Montgomery, P. F. Ward-Bailey, and J. J. Eppig (1983). Dev. Biol.95, 294–304.). Treatment of isolated cumulus cell-oocyte complexes with follicle-stimulating hormone (FSH) resulted in a dose-dependent increase in both cumulus cell cAMP levels and in the extent of inhibition of germinal vesicle breakdown (GVBD), the first morphological manifestation of oocyte maturation. Furthermore, it was found that concentrations of a membrane-permeable analog of cAMP, dibutyryl cAMP (dbcAMP), that were below those required for complete meiotic inhibition had a greater inhibitory effect on cumulus cell-enclosed oocytes than on denuded oocytes. Cumulus cell-enclosed and denuded oocytes matured at the same time in the absence of dbcAMP. Ablation of the gap junctions that couple cumulus cells to the oocyte abolished the maturation-inhibitory action of cumulus cells that was promoted either by FSH or low concentrations of dbcAMP. These results are consistent with the hypothesis that inhibition of oocyte maturation is mediated by a factor of granulosa/cumulus cell origin, other than cAMP, which requires cAMP for its activity and/or generation, and an intact intercellular coupling pathway between cumulus cells and the oocyte. A variety of steroid hormones potentiated the FSH-induced inhibition of maturation in cumulus cell-enclosed oocytes. In addition, steroid hormones inhibited maturation in denuded oocytes, but only when oocyte cAMP levels were elevated by cAMP analogs or forskolin. Steroids alone did not inhibit maturation of either cumulus cell-enclosed or denuded oocytes. Moreover, the steroids alone or in combination with FSH did not affect metabolic coupling between the cumulus cells and oocytes, nor did testosterone affect the forskolin-induced level of cAMP in denuded oocytes. Therefore, it is proposed that the oocyte is a site for the synergistic activity of steroid hormones with a cAMP-dependent process in inhibiting maturation. Results of these studies are discussed in terms of the roles of intercellular communication, cAMP, a putative maturation-inhibiting factor, and steroid hormones in the inhibition of maturation of mouse oocytes.  相似文献   

16.
cAMP synthesis by the rat oocyte and cumulus-oocyte complex was studied using direct labeling techniques. Cumulus-oocyte complexes synthesized cAMP in response to luteinizing hormone, follicle-stimulating hormone, cholera toxin, and forskolin. However, naked oocytes prepared from cumulus-oocyte complexes by mechanically removing the cumulus cells synthesized cAMP only in response to forskolin and follicle-stimulating hormone; cholera toxin and luteinizing hormone did not stimulate cAMP synthesis. Cholera toxin could augment the response of the oocytes to FSH, indicating an intact, though atypical, adenylate cyclase system. Forskolin was found to inhibit the onset of oocyte maturation in both cumulus-oocyte complexes and naked oocytes. The implications of these findings for the relationship between cAMP synthesis and oocyte maturation in the rat are discussed.  相似文献   

17.
Alterations of progesterone metabolism and especially of 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) activity were studied in cultured rat granulosa cells following various treatments. The cells were incubated for up to 48 h with or without follicle-stimulating hormone (FSH), androgens, hydroxyflutamide, estrogens, chlorea toxin, and dibutyryl cAMP [Bu2 cAMP]. Subsequently, the cells were incubated for 3 h with [4-14 C] progesterone (0.5 microM). The progesterone utilization and accumulation of 20 alpha-reduced and 5 alpha-reduced metabolites were assessed following thin-layer chromatography separation of radiolabeled steroids. Both FSH (1 microgram/ml) and testosterone (0.5 microM) decreased the 20 alpha-HSD activity by decreasing the maximal velocity (by 52% and 37%, respectively) without changing significantly the Km value. The inhibition of 20 alpha-HSD was demonstrable following 12 and 24 h exposure to FSH and following 24 and 48 h exposure to testosterone. Effects comparable to that induced by testosterone were elicited by other androgens (androstenedione and 5 alpha-dihydrotestosterone), but not by estrogens (estradiol-17 beta and estrone). Hydroxyflutamide reversed testosterone-induced effects: the increase of endogenous progesterone accumulation and the decrease of 20 alpha-HSD activity. Both cholera toxin (0.001-10 micrograms/ml) and Bu2 cAMP (62.5-1000 micrograms/ml) caused a dose-dependent inhibition of 20 alpha-HSD activity. Present results indicate that: the inhibition of 20 alpha-HSD by both FSH and androgens may be of a noncompetitive nature; androgen action on 20 alpha-HSD may be a true androgenic, receptor-mediated effect; and cAMP may mediate the FSH action on 20 alpha-HSD activity.  相似文献   

18.
Mature antral follicles were removed from the ovaries of pregnant mare serum gonadotropin (PMSG)-primed hamsters at proestrus prior to the LH surge. Following various incubation times with either LH (ovine) or FSH (rat), cAMP levels were determined in whole follicles, cumulus-oocyte complexes (COCs), and zona-intact or zona-free oocytes. LH produced a dose- and time-dependent change in follicle cAMP but had a minimal effect on the COCs and caused no change in cAMP in zona-free oocytes. By contrast, rFSH stimulated a small rise in follicular cAMP but significantly increased levels in COCs and zona-free oocytes. In a second series of experiments follicles were exposed for short periods to various additives after which they were washed and returned to hormone-free medium for a 6-hr total incubation period. LH (1 microgram/ml) initiated maturation in follicle-enclosed oocytes after a 5- to 15-min exposure period while groups incubated with 100 ng/ml required 60 min. FSH did not stimulate maturation after a 60-min exposure and when combined with 1 microgram or 100 ng/ml of LH negated the maturational effects seen with LH alone. It was postulated that the reason that lower concentrations of LH did not stimulate maturation following short-term incubations was due to an insufficient rise in cAMP. However, neither dbcAMP nor forskolin augmented the capacity of LH to initiate maturation following short-term exposure. By contrast dbcGMP and the guanylate cyclase activator, sodium nitroprusside (NP) did augment the maturation-inducing effects of LH. NP + LH raised cGMP concentrations in the follicle and oocyte and decreased follicular cAMP at 30 and 120 min. The results of this study indicate that the component cells within a follicle respond selectively with cAMP changes, depending on the gonadotropin, in a variable time- and dose-dependent manner. While LH is the more potent activator of cAMP in whole follicles, cAMP levels in the cumulus oophorus and oocyte show the greatest increase following exposure to FSH. LH was the more potent initiator of maturation, possibly through its effects on the mural granulosa cells. FSH appears to exert a more inhibitory role which may be due in part to elevated cAMP levels and/or a putitative inhibitor in the COC and oocyte.  相似文献   

19.
Arthrobacter sp. CGMCC 3584 are able to produce cAMP from glucose by the purine synthesis pathway via de novo or salvage biosynthesis. In order to gain an improved understanding of its metabolism, 13C-labeling experiment and gas chromatography–mass spectrometry (GC–MS) analysis were employed to determine the metabolic network structure and estimate the intracellular fluxes. GC–MS analysis helps to reflect the activity of the intracellular pathways and reactions. The metabolic network mainly contains glycolytic and pentose phosphate pathways, the tricarboxylic acid cycle, and the inactive glyoxylate shunt. Hypoxanthine as a precursor of cAMP and sodium fluoride as an inhibitor of glycolysis were found to increase the cAMP production, as well as the flux through the PP pathway. The effects of adding hypoxanthine and sodium fluoride are discussed based on the enzyme assays and metabolic flux analysis. In conclusion, our results provide quantitative insights into how cells manipulate the metabolic network under different culture conditions and this may be of value in metabolic regulation for desirable production.  相似文献   

20.
Influences of steroid hormone additions or of their binding by specific antisera on nuclear maturation and subsequent fertilization and cleavage of bovine oocytes were studied in vitro. It was found that progesterone in doses of 50 ng/ml, 250 ng/ml, 1 μg/ml or 5 μg/ml stimulates reinitiation and in doses of 1 or 5 μg/ml stimulates further development of meiosis. Antiserum to progesterone had opposite effects on nuclear maturation, but has no influence on the ability of matured oocytes to subsequent fertilization and cleavage. Testosterone additions (10 ng, 100 ng, 1 μg or 5 μg/ml) did not influence nuclear maturation, but antiserum to this hormone inhibited both meiosis reinitiation and completion, as well as lowered the rate of oocytes fertilized and embryos obtained. Estradiol (5, 50, 100 or 500 ng or 5 μg/ml) treatment stimulated reinitiation, but not nuclear maturation. Antiserum to estradiol activated both reinitiation, development and completion of meiosis, but the cells matured by estradiol deficit were as a rule uncapable of fertilization and further cleavage. Estradiol addition (1 μg/ml) to maturation medium together with FSH (10 μg/ml) (but not of FSH alone) lead to a significantly higher rate of fertilization and cleavage of matured cells.

Results obtained suggest (1) relative independence of reinitiation, further development of nuclear maturation and cytoplasmic maturation regulation in bovine oocytes as well as (2) the involvement of steroid hormones in these three processes.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号