首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】本实验通过透射电子显微镜观察黄单胞菌在细胞损伤条件下的亚细胞结构和过氧化氢积累定位的变化。【方法】采用氯化铈对过氧化氢特异染色的组织化学法。【结果】细菌细胞受损伤后,出现了一个细胞壁之外的过氧化氢大量积累的额外位点。并且这个额外位点出现的频率和过氧化氢积累量都与细胞损伤的程度密切相关。另一方面,亚细胞结构的常规染色结果也显示,受到损伤的细胞中也出现一个额外的亚显微结构,即间体。间体出现的频率和大小也随着细胞损伤程度的增加而显著上升。【结论】多元线性回归分析的结果证明细胞损伤条件下细菌中出现的额外过氧化氢大量积累的位点就是间体。细胞损伤后间体中的过氧化氢积累对受损细胞应是一种主动调控机制。  相似文献   

2.
The cellular production of hydrogen peroxide   总被引:39,自引:13,他引:39       下载免费PDF全文
1. The enzyme–substrate complex of yeast cytochrome c peroxidase is used as a sensitive, specific and accurate spectrophotometric H2O2 indicator. 2. The cytochrome c peroxidase assay is suitable for use with subcellular fractions from tissue homogenates as well as with pure enzyme systems to measure H2O2 generation. 3. Mitochondrial substrates entering the respiratory chain on the substrate side of the antimycin A-sensitive site support the mitochondrial generation of H2O2. Succinate, the most effective substrate, yields H2O2 at a rate of 0.5nmol/min per mg of protein in state 4. H2O2 generation is decreased in the state 4→state 3 transition. 4. In the combined mitochondrial–peroxisomal fraction of rat liver the changes in the mitochondrial generation of H2O2 modulated by substrate, ADP and antimycin A are followed by parallel changes in the saturation of the intraperoxisomal catalase intermediate. 5. Peroxisomes supplemented with uric acid generate extraperoxisomal H2O2 at a rate (8.6–16.4nmol/min per mg of protein) that corresponds to 42–61% of the rate of uric acid oxidation. Addition of azide increases these H2O2 rates by a factor of 1.4–1.7. 6. The concentration of cytosolic uric acid is shown to vary during the isolation of the cellular fractions. 7. Microsomal fractions produce H2O2 (up to 1.7nmol/min per mg of protein) at a ratio of 0.71–0.86mol of H2O2/mol of NADP+ during the oxidation of NADPH. H2O2 is also generated (6–25%) during the microsomal oxidation of NADH (0.06–0.025mol of H2O2/mol of NAD+). 8. Estimation of the rates of production of H2O2 under physiological conditions can be made on the basis of the rates with the isolated fractions. The tentative value of 90nmol of H2O2/min per g of liver at 22°C serves as a crude approximation to evaluate the biochemical impact of H2O2 on cellular metabolism.  相似文献   

3.
One-month-old and 1-year-old male BALB/c mice showed a lower resistance than 4.5-month-old mice to Histoplasma capsulatum infection. 4.5-month-old mice successfully resolved the infection when challenged with either a LD50 or LD100 for 1-month-old mice. A critical clinical course of experimental histoplasmosis was observed in 4.5-month-old syngeneic mice when spleen cells from 1-month-old BALB/c mice were transferred to them. Irradiated recipient mice, into which bone marrow and spleen cells were transferred, died when infected with the LD100 for 1-month-old mice. The same occurred with 4.5-month-old non-irradiated infected mice which received only spleen cells and with 1-month-old mice which were used as a control of infection. However, infected and non-transferred 4.5-month-old mice survived this dose. Thus, the adoptive transference of spleen cells from 1-month-old mice to 4.5-month-old mice suppressed the resistance of these adult mice to infection. Apparently, the transference of the suppressive state requires the presence of two cell populations, a non-adherent and an adherent and radioresistant cell present in the spleen of male 1-month-old mice.  相似文献   

4.
Nitric oxide (NO) has been postulated to be required, together with reactive oxygen species (ROS), for activation of disease resistance reactions of plants to infection with a pathogen or elicitor treatment. However, biochemical mechanisms by which ROS and NO participate in these reactions are still under intensive study and controversial debate. We previously demonstrated that o-hydroxyethylorutin when applied on tomato leaves (Lycopersicon esculentum Mill. cv. "Perkoz") restricted Botrytis cinerea infection development. In this research we investigated ROS and NO generation in tomato plants treated with o-hydroxyethylorutin, non-treated and infected ones. The NO content was enhanced or decreased in the studied plants by supplying them with NO generator-SNP or scavenger-cPTIO. NO detection was carried out using diaminofluorescein diacetate (DAF-DA) in conjunction with confocal laser scanning microscopy. The influence of elevated and decreased levels of NO on B. cinerea infection development and ROS generation was studied. The elevated NO concentration in tomato leaves strongly decreased hydrogen peroxide concentration without affecting other studied ROS (superoxide anion and hydroxyl radical) levels. H2O2 concentrations in NO-supplied leaves were low regardless of further treatment of tomato leaves with o-hydroxyethylorutin or inoculation with B. cinerea. The low H2O2 concentration coincided with quick and severe infection development in NO-supplied leaves. As activities of enzymes generating (SOD EC 1.15.1.1)) and removing (APX EC 1.11.1.11, CAT EC 1.11.1.6) H2O2 were unchanged in the studied plants, the decrease in H2O2 concentration was probably due to a direct NO-H2O2 interaction.  相似文献   

5.
Enterococcus faecalis exhibits high resistance to oxidative stress. Several enzymes are responsible for this trait. The role of alkyl hydroperoxide reductase (Ahp), thiol peroxidase (Tpx), and NADH peroxidase (Npr) in oxidative stress defense was recently characterized. Enterococcus faecalis, in contrast to many other streptococci, contains a catalase (KatA), but this enzyme can only be formed when the bacterium is supplied with heme. We have used this heme dependency of catalase activity and mutants deficient in KatA and Npr to investigate the role of the catalase in resistance against exogenous and endogenous hydrogen peroxide stress. The results demonstrate that in the presence of environmental heme catalase contributes to the protection against toxic effects of hydrogen peroxide.  相似文献   

6.
Survival after H2O2 exposure or heat shock of asynchronous Chinese hamster ovary cells (HA-1) was assayed following pretreatment with mildly toxic doses of either H2O2 or hyperthermia. H2O2 cytotoxicity at 37 degrees C, expressed as a function of mM H2O2 was found to be dependent on cell density at the time of treatment. The density dependence reflected the ability of cells to reduce the effectiveness of H2O2 as a cytotoxic agent. When the survival data were plotted as a function of mumoles H2O2/cell at the beginning of the treatment, survival was independent of cell density. Cells pretreated with 0.1 mM (3-5 mumoles/cell X 10(-7)) H2O2 for 1 hr at 37 degrees C (30-50% survival) became resistant to a subsequent H2O2 treatment 16-36 hr after pretreatment [dose modifying factor (DMF) at 1% isosurvival = 4-6]. Their resistance to 43 degrees C heating, however, was only slightly increased over controls 16-36 hr following pretreatment (DMF at 1% isosurvival = 1.2). During this same interval, the synthesis of protein migrating in the 70 kD region of a one-dimensional SDS-polyacrylamide gel was enhanced twofold in the H2O2-pretreated cells. When the cells were heated for 15 min at 45 degrees C (40-60% survival), the survivors became extremely resistant to 43 degrees C heating and somewhat resistant to H2O2 (DMF at 1% isosurvival = 2). The heat-induced resistance to heat developed much more rapidly (reached a maximum between 6 and 13 hr) following pretreatment than the heat-induced resistance to H2O2 (16-36 hr). The enhanced synthesis of 70 kD protein after heat shock was greater in magnitude and occurred more rapidly following preheating than following H2O2 pretreatment. The cells that became resistant to H2O2 by either pretreatment (H2O2 or heat shock) also increased their ability to reduce the H2O2 cytotoxicity from the treatment medium beyond that of the untreated HA-1 cells. This may be one of the mechanisms involved in the increased resistance and a common adaptive mechanism induced by both stresses. These data indicate that mammalian cells develop resistance to H2O2 following mild pretreatment with H2O2 or heat shock. The cross-resistance induced by H2O2 and heat shock reinforce the hypothesis that some overlap in mechanisms exist between the cellular responses to these two stresses. However, the failure of H2O2 pretreatment to induce much resistance to heat indicates that there are also differences in the actions of the two agents.  相似文献   

7.
8.
This study investigated the pattern of variation in nuclear DNA content at different ploidy levels in Fragaria (Strawberry, Rosaceae) using flow cytometry based on mean fluorescent intensity (MFI) reflected by propidium-iodide-stained nuclei. On average, MFI values were 237 for diploids F. vesca, F. viridis, and F. nubicola, 416.5 for tetraploid F. orientalis, 621.5 for hexaploid F. moschata, and 798 for octoploids F. × ananassa, F. virginiana, and F. chiloensis. Within diploids MFI ranged from 225.9 in F. vesca ssp. vesca to 255.4 in F. nubicola, and within octoploids varied from 766 in F. × ananassa to 808 in F. virginiana. The nuclear DNA variation was significant among diploid species (N = 21, P < 0.008), but not across octoploid species (N = 17, P>0.386). MFI values were also variable among different genotypes of a given species though not significant. The values of mean basic genome DNA (MFI divided by ploidy level) were 118.5, 104, 103.5, and 99.8, respectively, for diploids, tetraploid, hexaploid, and octoploid species. This indicates that relative genomic size decreases by increasing ploidy level, and that there is no direct proportional relationship between DNA content and ploidy levels in Fragaria, supporting the idea of genome downsizing during polyploidization in plants.  相似文献   

9.
We investigated the relationship between plasma mid-regional pro-adrenomedullin (MR-proADM)-like immunoreactive substance (IS) level and clinical characteristics associated with renal failure or resistance to antihypertensive therapy in stable kidney transplant recipients. Forty-six Japanese kidney transplant recipients who underwent transplantation more than 90 days prior to the study were included. To evaluate resistance to antihypertensive therapy, we calculated the treatment intensity score of the antihypertensive drugs in each recipient. Morning blood samples were collected and plasma MR-proADM-IS levels were measured using an enzyme immunoassay. A significant correlation was observed between plasma MR-proADM-IS level with creatinine clearance or treatment intensity score. Multiple regression analysis identified plasma MR-proADM level and body mass index as significant independent factors associated with treatment intensity score. Plasma MR-proADM level may be a useful biomarker indicating the degree of resistance to antihypertensive therapy.  相似文献   

10.
The reaction between metmyoglobin and hydrogen peroxide   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

11.
The mechanism whereby tumor necrosis factor (TNF) kills mammalian cells is not well understood, although oxidative damage has been suggested by several investigators. Further, it is not known why cells vary in their responsiveness to TNF. We show that the cytotoxic effect of TNF toward TNF-sensitive L929 cells is blocked under hypoxic conditions, suggesting a critical role of molecular oxygen and reactive oxygen species. To test whether cellular resistance to reactive oxygen species could provide resistance to TNF, we derived a variant strain from L929 cells by chronic exposure to an oxidizing agent, hydrogen peroxide (H2O2). These cells exhibit marked resistance to TNF as well as to H2O2. This cross-protection provides additional evidence that mechanisms of resistance to oxidative damage are causally related to TNF-induced cell death. Scatchard analysis of TNF binding did not reveal significant differences between the H2O2-resistant line and the wild-type L929 line. On the other hand, analyses of antioxidant enzymes and glutathione levels in cells of the wild-type and the H2O2-resistant lines revealed several potentially important differences. Before exposure to TNF, the H2O2-resistant variants have elevated catalase activity, decreased activity of total glutathione-S-transferase (GST), and similar superoxide dismutase (SOD) activities. Exposure to TNF led to alteration in CuZnSOD activity, and much more so in the variants than in the wild-type L929 cells. However, no significant change in MnSOD activities in cells of either cell line was observed. Total GST activity was not altered appreciably by TNF in either cell line, but Western analysis showed that the level of alpha GST isozyme was increased and mu GST isozyme decreased in the H2O2-resistant variants. Furthermore, alterations in total glutathione content were observed in both the control and the variant cells.  相似文献   

12.
Treatment of WEHI7.2 cells, a mouse thymoma-derived cell line, with dexamethasone, a synthetic glucocorticoid, causes the cells to undergo apoptosis. Previous work has shown that treatment of WEHI7.2 cells with dexamethasone results in a downregulation of antioxidant defense enzymes, suggesting that increased oxidative stress may play a role in glucocorticoid-induced apoptosis. To test whether resistance to oxidative stress causes resistance to dexamethasone-induced apoptosis, WEHI7.2 cell variants selected for resistance to 50, 100 and 200 microM H(2)O(2) were developed. Resistance to H(2)O(2) is accompanied by increased antioxidant enzyme activity, resistance to other oxidants and a delayed loss of viable cells after dexamethasone treatment. In the 200 microM H(2)O(2)-resistant cell variant the delay in cell loss is correlated with delayed release of cytochrome c from the mitochondria into the cytosol. This suggests that reactive oxygen species play a role in a signaling event during steroid-mediated apoptosis in lymphocytes.  相似文献   

13.
Reactive oxygen species (ROS) may act as signaling molecules in the physiology responses and the present study aims to investigate the effect of extracellular hydrogen peroxide on macrophages cellular response. The results obtained in the present study showed that the extracellular hydrogen peroxide affectively alter the membrane potential of the cell membrane and ion exchange channels in the cell membrane through intracellular NAD turnover that may lead to an intracellular calcium ion concentration alteration and subsequently induce the downstream signal activation.  相似文献   

14.
Lutchen, Kenneth R., and Heather Gillis. Relationshipbetween heterogeneous changes in airway morphometry and lung resistanceand elastance. J. Appl. Physiol.83(4): 1192-1201, 1997.We present a dog lung model to predictthe relation between inhomogeneous changes in airway morphometry andlung resistance (RL) andelastance (EL) for frequenciessurrounding typical breathing rates. TheRL andEL were sensitive in distinctways to two forms of peripheral constriction. First, when there is alarge and homogeneous constriction, theRL increases uniformly over thefrequency range. The EL israther unaffected below 1 Hz but then increases with frequencies up to5 Hz. This increase is caused by central airway wallshunting. Second, the RL andEL are extremely sensitive to mild inhomogeneous constriction in which a few highly constricted ornearly closed airways occur randomly throughout theperiphery. This results in extreme increases in the levelsand frequency dependence of RLand EL but predominantly attypical breathing rates (<1 Hz). Conversely, theRL andEL are insensitive to highly inhomogeneous airway constriction that does not produce any nearly closed airways. Similarly, alterations in theRL andEL due to central airway wallshunting are not likely until the preponderance of the peripheryconstricts substantially. The RLand EL spectra are far moresensitive to these two forms of peripheral constriction than toconstriction conditions known to occur in the central airways. On thebasis of these simulations, we derived a set of qualitative criteria toinfer airway constriction conditions from RL andEL spectra.

  相似文献   

15.
16.
The role of two sigma factors, AlgT and RpoS, in mediating Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine was investigated. Two knock out mutant strains, SS24 (rpoS-) and PAO6852 (algT-), were compared with a wild type, PAO1, in their susceptibility to monochloramine and hydrogen peroxide. When grown as biofilms on alginate gel beads (mean untreated areal cell density 3.7 +/- 0.27 log cfu cm-2) or on glass slides (mean untreated areal cell density 7.6 +/- 0.9 log cfu cm-2), wild type bacteria exhibited reduced susceptibility to both antimicrobial agents in comparison with suspended cells. On alginate gel beads, all strains were equally resistant to monochloramine. rpoS- and algT- gel bead biofilms of 24-hour-old were more susceptible to hydrogen peroxide disinfection than were biofilms formed by PAO1. Biofilm disinfection rate coefficients for the two mutant strains were statistically indistinguishable from planktonic disinfection rate coefficients, indicating complete loss of biofilm resistance. While 48-hour-old algT- biofilm cells became resistant to hydrogen peroxide, 48-hour-old rpoS- biofilm cells remained highly susceptible. With the thicker biofilms formed on glass coupons, all strains were equally resistant to both hydrogen peroxide and monochloramine. It is concluded that while RpoS and AlgT may play a transient role in protecting thin biofilms from hydrogen peroxide, these sigma factors do not mediate resistance to monochloramine and do not contribute significantly to the hydrogen peroxide resistance of thick biofilms.  相似文献   

17.
We identified and characterized the iron-binding protein Dps from Campylobacter jejuni. Electron microscopic analysis of this protein revealed a spherical structure of 8.5 nm in diameter, with an electron-dense core similar to those of other proteins of the Dps (DNA-binding protein from starved cells) family. Cloning and sequencing of the Dps-encoding gene (dps) revealed that a 450-bp open reading frame (ORF) encoded a protein of 150 amino acids with a calculated molecular mass of 17,332 Da. Amino acid sequence comparison indicated a high similarity between C. jejuni Dps and other Dps family proteins. In C. jejuni Dps, there are iron-binding motifs, as reported in other Dps family proteins. C. jejuni Dps bound up to 40 atoms of iron per monomer, whereas it did not appear to bind DNA. An isogenic dps-deficient mutant was more vulnerable to hydrogen peroxide than its parental strain, as judged by growth inhibition tests. The iron chelator Desferal restored the resistance of the Dps-deficient mutant to hydrogen peroxide, suggesting that this iron-binding protein prevented generation of hydroxyl radicals via the Fenton reaction. Dps was constitutively expressed during both exponential and stationary phase, and no induction was observed when the cells were exposed to H(2)O(2) or grown under iron-supplemented or iron-restricted conditions. On the basis of these data, we propose that this iron-binding protein in C. jejuni plays an important role in protection against hydrogen peroxide stress by sequestering intracellular free iron and is expressed constitutively to cope with the harmful effect of hydrogen peroxide stress on this microaerophilic organism without delay.  相似文献   

18.
In exponential-phase Chinese-hamster cells, 0.1 mM-diethyldithiocarbamate (DDC) afforded greater than 1 log survival protection to cultures treated before and during exposure to 1 mM-H2O2. Both DDC and H2O2 treatment stimulated the activity of ornithine decarboxylase (ODC), the first enzyme in polyamine synthesis, within 4 h of exposure. DDC, and to a lesser degree H2O2, also stimulated the activity of spermidine N1-acetyltransferase (SAT), the rate-limiting enzyme in polyamine catabolism. The increase in SAT activity, after exposure to DDC or another stress (heat shock), was inhibited in cells depleted of putrescine and spermidine by alpha-difluoromethylornithine (DFMO), the enzyme-activated suicide inhibitor of ODC. Pretreatment with DFMO or heat shock also induced resistance to H2O2 cytotoxicity. Since SAT activity is low in resting cells, yet stimulation of enzyme activity depends on endogenous spermidine pools, these results suggest that the expression of SAT activity occurs by a mechanism involving a stress-dependent displacement of spermidine into a new intracellular compartment. The stimulation of ODC and SAT activities does not appear to be a necessary component of the mechanism by which DDC protects cells from H2O2 cytotoxicity, although spermidine displacement may be a common facet of the cellular response to stress.  相似文献   

19.
Ralstonia solanacearum, a soil-borne bacterium causes bacterial wilt, is a lethal disease of eggplant (Solanum melongena L.). However, the first line of defense mechanism of R. solanacearum infection remains unclear. The present study focused on the role of induced H2O2, defense-related enzymes of ascorbate-glutathione pathway variations in resistant and susceptible cultivars of eggplant under biotic stress. Fifteen cultivars of eggplant were screened for bacterial wilt resistance, and the concentration of antioxidant enzymes were estimated upon infection with R. solanacearum. A quantitative real-time PCR was also carried out to study the expression of defense genes. The concentration of H2O2 in the pathogen inoculated seedlings was two folds higher at 12 h after pathogen inoculation compared to control. Antioxidant enzymes of ascorbate-glutathione pathway were rapidly increased in resistant cultivars followed by susceptible and highly susceptible cultivars upon pathogen inoculation. The enzyme activity of ascorbate-glutathione pathway correlates by amplification of their defense genes along with pathogenesis-related protein-1a (PR-1a). The expressions of defense genes increased 2.5?3.5 folds in resistant eggplant cultivars after pathogen inoculation. The biochemical and molecular markers provided an insight to understand the first line of defense responses in eggplant cultivars upon inoculation with the pathogen.  相似文献   

20.
[目的]σ因子是细菌RNA聚合酶全酶的重要组分,包括必须σ因子和选择性σ因子.SigF作为重要的选择性σ因子影响结核分枝杆菌(Mycobacterium tuberculosis)的致病性和毒力等重要的功能.与之对应的在非致病性、快速生长的分枝杆菌耻垢分枝杆菌(M.smegmatis)中,sigF的调控可能与其适应一定的生理环境相关.[方法]通过基因敲除、遗传互补和抗药性分析,系统的研究了耻垢分枝杆菌SigF的应答调控.[结果]sigF敲除菌株与野生菌相比,对过氧化氢特别敏感,并且这种敏感性能够通过反式互补野生型的基因得到回复 ;由于细菌体内的抗氧化能力与耐药性有较高的相关性,进一步分析sigF敲除菌株的抗药性和抗氧化相关基因的表达情况,显示SigF影响细菌清除过氧化氢的能力,但是并不影响包括异烟肼等药物的敏感性及与异烟肼敏感性相关基因的表达.[结论]SigF调控的活性氧胁迫应答途径与异烟肼活化的氧化胁迫应答途径不同.另外,实验显示SigF参与了耻垢分枝杆菌的色素的合成,提示SigF参与的是光氧化胁迫应答途径,与药物引起的氧化胁迫应答途径是不同的通路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号