首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The linked structural genes lux A and lux B, encoding bacterial luciferase of a marine bacterium Vibrio harveyi, were fused with the nitrogenase nifD promoter from Bradyrhizobium japonicum and with the P1 promoter of pBR322. Both fusions were integrated into the B. japonicum chromosome by site-specific recombination. Soybean roots infected with the two types of rhizobium transconjugants formed nitrogen-fixing nodules that produced bright blue-green light. Cells containing the P1 promoter/lux AB fusion resulted in continuously expressed bioluminescence in both free-living rhizobium and in nodule bacteriods. However, when under control of the nifD promoter, luciferase activity was found only in introgen-fixing nodules. Light emission from bacteroids allowed us to visualize and to photograph nodules expressing this marker gene fusion in vivo at various levels of resolution, including within single, living plant cells. Localization of host cells containing nitrogen-fixing bacteroids within nodule tissue was accomplished using low-light video microscopy aided by realtime image processing techniques developed specifically to enhance extreme low-level luminescent images.  相似文献   

2.
The lux genes from Photobacterium phosphoreum (NCMB844) have been cloned into Escherichia coli in a plasmid containing the T7-bacteriophage promoter. By specific expression in vivo under the T7 promoter, five structural genes (luxA-E) coding for the fatty acid reductase and luciferase polypeptides were identified as well as a new gene, designated as luxF, which codes for a 26kDa polypeptide. This new gene is located between luxB and luxE and thus disrupts the structural gene order of luxCDABE found in the Vibrio genus. The luxF gene and the protein it codes for have recently been identified in other Photobacterium species and so appears to be widely distributed within this genus. Nucleotide sequencing of the luxF gene has shown it to code for a protein homologous to the luciferase subunits, coded by the luxA and luxB genes. Although this gene is not necessary for light emission in all luminescent bacteria, it must play an essential role in the biochemistry, physiology, or ecology of the luminescent system in species of the Photobacterium genus.  相似文献   

3.
4.
A study was made of the effect of RcsA and RcsB on the Vibrio fischeri lux expression in Escherichia coli. RcsA suppressed the LuxR activity and thereby inhibited expression of the lux genes coding for luciferase and reductase. In osmotic shock, RcsA–RcsB activated lux expression and, consequently, the bioluminescence of E. coli cells in the early log phase.  相似文献   

5.
The use of luxABCDE (lux) offers certain advantages over other reporters, such as: lacZ and xylE. It is real time and its signal generation is produced without the requirement for any additional substrates. In some bacteria such as Staphylococcus spp, light production by luciferase is restricted because of a limited availability of endogenous substrates such as fatty acid aldehyde. We describe the construction of promoterless-lux cloning vectors, pGYlux and pAmilux. S. aureus carrying B. subtilis xyl/tetO promoter fused to the lux genes of pGYlux gave up to a 2.5-fold enhancement of luminescence over S. aureus carrying the xyl/tetO promoter fused to lux genes of the previously published parent vector pAL2. Furthermore, pAmilux showed a 6-fold enhancement of lux expression when compared to pGYlux in S. aureus. This was achieved by cloning the constitutive ami promoter upstream of the luxCDE genes to increase endogenous fatty acid aldehyde production while maintaining its reporter functionality by fusing promoters to the luxAB genes.  相似文献   

6.
7.
8.
9.
This study presents a simple protocol to measure 2 promoter activities within a single culture when using both Lux and firefly luciferase (FF-Luc) reporters. To demonstrate this, 2 E. coli strains were constructed using 2 compatible plasmids, one harboring a katG::luc fusion gene and the other either a fabA::lux or grpE::lux fusion gene. To differentiate between the FF-Luc and Lux activities within E. coli, we used the instability of the V. fischeri Lux proteins. Basically, it involved a two step assay where (1) without addition of luciferin, only the Lux activity was assayed and (2) with added luciferin and a heat treatment at 42°C, the FF-Luc activity was assayed. This was possible because a shift from 28 to 42°C for 10 min was sufficient to denature/inactivate the Lux proteins to background levels. After treatment, the substrate for FF-Luc was added and the FF-Luc activity could be reliably measured. Using this protocol, it was possible to assay the activities of both bioluminescent reporter proteins and, thus, the relative activity of the different promoters. Subsequent experiments were performed using known inducers of the katG, fabA and grpE promoters where tests were successfully performed with single compound samples as well as samples causing a variety of stresses. These results clearly demonstrated that two promoter activities can be monitored in a single host with this dual-luciferase system.  相似文献   

10.
11.
12.
FabA and FabZ are the two dehydratase enzymes in Escherichia coli that catalyze the dehydration of acyl intermediates in the biosynthesis of fatty acids. Both enzymes form obligate dimers in which the active site contains key amino acids from both subunits. While FabA is a soluble protein that has been relatively straightforward to express and to purify from cultured E. coli, FabZ has shown to be mostly insoluble and only partially active. In an effort to increase the solubility and activity of both dehydratases, we made constructs consisting of two identical subunits of FabA or FabZ fused with a naturally occurring peptide linker, so as to force their dimerization. The fused dimer of FabZ (FabZ‐FabZ) was expressed as a soluble enzyme with an ninefold higher activity in vitro than the unfused FabZ. This construct exemplifies a strategy for the improvement of enzymes from the fatty acid biosynthesis pathways, many of which function as dimers, catalyzing critical steps for the production of fatty acids.  相似文献   

13.
A human opioid peptide hormone, β-endorphin, was expressed in Escherichia coli as the C-terminal portion of a fused protein. The fused protein consisting of the N-terminal 62% of E. coli anthranilate synthetase (323 amino acids), a peptide corresponding to the linker DNA (7 amino acids), and the precursor form of β-endorphin (47 amino acids), was highly expressed under the control of a tryptophan promoter. The level of expression of β-endorphin was estimated to be 17 mg/liter broth by radioimmunoassay, and 51 mg/liter broth by SDS polyacrylamide gel electrophoresis followed by a densitometric analysis. β-Endorphin was cleaved from the fused protein and purified by HPLC, and is presumed to be identical with human β-endorphin because of its amino acid composition and amino acid sequence.  相似文献   

14.
Seven different recombinant bioluminescent strains of Escherichia coli containing, respectively, the promoters katG and soxS (responsive to oxidative damage), recA (DNA damage), fabA (membrane damage), grpE, and rpoE (protein damage) and lac (constitutive expression) fused to the bacterial operon from Photorhabdus luminescens, were used to describe the mechanism of toxicity of 1,1-dimethylhydrazine (1,1-DMH) on bacteria, as well as to determine whether bacteria can sensitively detect the presence of this compound. A clear response to 1,1-DMH was observed only in E. coli carrying the katG’::lux, soxS’::lux, and recA’::lux-containing constructs. Preliminary treatment with catalase of the medium containing 1,1-DMH completely diminished the stress-response of the PkatG, PrecA, and PsoxS promoters. In the strain E. coli (pXen7), which contains a constitutive promoter, the level of cellular toxicity caused by the addition of 1,1-DMH was dramatically reduced in the presence of catalase.It is suggested that the action of 1,1-DMH on bacterial cells is determined by hydrogen peroxide, which is formed in response to reduction of the air oxygen level.  相似文献   

15.
《Luminescence》2003,18(3):145-155
The purpose of the present paper was to study the influence of bacteria harbouring the luciferase‐encoding Vibrio harveyi luxAB genes upon the spectral emission during growth in batch‐culture conditions. In vivo bioluminescence spectra were compared from several bioluminescent strains, either naturally luminescent (Vibrio fischeri and Vibrio harveyi) or in recombinant strains (two Gram‐negative Escherichia coli::luxAB strains and a Gram‐positive Bacillus subtilis::luxAB strain). Spectral emission was recorded from 400 nm to 750 nm using a highly sensitive spectrometer initially devoted to Raman scattering. Two peaks were clearly identified, one at 491–500 nm (± 5 nm) and a second peak at 585–595 (± 5 nm) with the Raman CCD. The former peak was the only one detected with traditional spectrometers with a photomultiplier detector commonly used for spectral emission measurement, due to their lack of sensitivity and low resolution in the 550–650 nm window. When spectra were compared between all the studied bacteria, no difference was observed between natural or recombinant cells, between Gram‐positive and Gram‐negative strains, and growth conditions and growth medium were not found to modify the spectrum of light emission. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Summary The genes encoding xylose isomerase from Bacillus subtilis and Actinoplanes missouriensis have been isolated by complementation of a xylose isomerase defective Escherichia coli mutant. The xylose isomerase gene from A. missouriensis could be expressed in E. coli under the control of its own promoter, whereas the cloned Bacillus gene was expressed in E. coli only after the spontaneous integration of the E. coli IS5 element. After fusion of the Bacillus gene to the yeast PDC1 promoter, transformants of Saccharomyces cerevisiae contained the xylose isomerase protein. Approx. 5% of the total cellular protein of transformants consisted of xylose isomerase that was found to be at least partly insoluble. Neither the insoluble protein nor Triton X-114 solubilized isomerase was catalytically active. To investigate whether the xylose isomerase of A. missouriensis can be expressed in S. cerevisiae the coding region was fused to the yeast GAL1 promoter. Analysis of total RNA from yeast transformants containing this construction showed a xylose isomerase specific mRNA.Dedicated to Professor Karl Esser on the occasion of his 60th birthday  相似文献   

17.
Hybrid 70S ribosomes were produced by combining Anacystis nidulans and Escherichia coli 30S and 50S subunits. Both the A. nidulans 30S-E. coli 50S and E. coli 30S- A. nidulans 50S hybrids were functional in synthesizing protein when tested in a standard in vitro amino acid incorporating system. Both 70S hybrids were inhibited by streptomycin but the degree of inhibition was dependent upon the source of the 30S subunit. The ability to form functional 70S ribosomes from subunits of blue-green algae and bacteria is further evidence of the procaryotic nature of blue-greens and of the functional homology of the two protein synthesizing systems.  相似文献   

18.
The survival of lux-marked recombinants of Escherichia coli and Bacillus subtilis was studied in the rhizosphere of bean (Phaseolus vulgaris L.) and in bulk soil. The number of E. coli (pSB343) containing a complete lux operon did not differ significantly according to whether they were introduced into soil separately or together with a non-luminescent mutant Pseudomonas fluorescens R2fN. When genetically altered strains of E. coli and B. subtilis bearing a complete or an incomplete lux-reporter system were introduced into soil, the numbers of surviving cells were the same both in the rhizosphere and bulk soil. The insertion of lux genes into bacterial strains therefore does not affect their competitiveness and survival in the rhizosphere and bulk soil.The author is with the Department of Microbiology, University of Silesia, Jagielloska 28, 40-032 Katowice, Poland  相似文献   

19.
Regulatory mutants of the luminescent bacterium, Vibrio harveyi, have been isolated whose light emission can be stimulated by extracts of the growth media. Chloroform extracts of conditioned media in which V. harveyi has been grown can increase light emission in one of the dark mutants, D34, over 103-fold. An increase in the level of the mRNA and the enzymes associated with the lux system can also be demonstrated. Analysis of the expression of the lux system in Escherichia coli transformed with DNA from the D34 regulatory mutant demonstrates that the mutation resides outside the luciferase structural genes. The results suggest that the decrease in light emission in the regulatory mutants may be due to a mutation in synthesis of an autoinducer analogous to that found for the Vibrio fischeri lux system.  相似文献   

20.
Rubisco activity during photosynthesis is regulated by the rubisco activase, which facilitates the dissociation of RuBP and other inhibitory sugar phosphates from the active site of rubisco in an ATP-dependent reaction. In this paper, barleyRca genes (RcaA1,RcaA2 andRcaB) were expressed inE. coli and the activity of rubisco activase expressed was assayed biochemically by chromatography. Then the protein was identified electrophoretically by SDS-PAGE and detected immunologically by Western blot analysis using polyclonal antibodies raised against the kidney bean rubisco activase as probe. The band pattern of purified proteins on the polyacrylamide gel showed two polypeptides of 46 kD and 42 kD. Anti-rubisco activase antibodies reacted specifically with both polypeptides of 46 kD and 42 kD present in the crude extracts ofE. coli transformants. Therefore, it was found that the genes of barley rubisco activase was successfully expressed inE. coli as active forms of 46 kD and 42 kD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号