首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrochemical biosensor for the determination of lysine to be used for rapid evaluation of food quality has been developed. Platinum electrodes have been coated by electropolymerisation with 1,2-diaminobenzene (1.2-DAB) using cyclic voltammetry. The reduction in the oxidation of interferents compared with the bare platinum electrode was 100% for ascorbic acid, 99% for acetaminophen and 99% for cysteine. The enzyme L-lysine-α-oxidase was then immobilised onto the polymer layer by passive adsorption and a calibration curve for lysine constructed. This gave a linear range of 1×10−5 mol/l to 1×10−3 mol/l and a limit of detection of 2×10−7 mol/l.  相似文献   

2.
A novel competitive immunosensor was developed as a model system using anti-human serum albumin (HSA)-conjugated gold nanoparticles (AuNPs) as an electrochemical label and mobile crystalline material-41 (MCM-41)–polyvinyl alcohol (PVA) mesoporous nanocomposite as an immobilization platform. However, no attempt has yet been made to use the MCM-41 as the supporting electrolyte for the electrosynthesis of nonconducting polymer nanocomposite. This hybrid membrane was evaluated extensively by using field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) to determine its physicochemical and electrochemical properties in immunosensor application. FESEM revealed an appropriate and stable attachment between HSA and MCM-41 and also a dense layer deposition of MCM-41–HSA–PVA film onto the electrode surfaces. DPV was developed for quantitative determination of antigen in biological samples. A decrease in DPV responses was observed with increasing concentrations of HSA in standard and real samples. In optimal conditions, this immunosensor based on MCM-41–PVA nanocomposite film could detect HSA in a high linear range (0.5–200 μg ml?1) with a low detection limit of 1 ng ml?1. The proposed method showed acceptable reproducibility, stability, and reliability and could also be applied to detect the other antigens.  相似文献   

3.
An electrochemiluminescence (ECL) approach for methamphetamine determination was developed based on a glassy carbon electrode modified with a Ru(bpy)32+‐doped silica nanoparticles/Nafion composite film. The monodispersed nanoparticles, which were about 50 nm in size, were synthesized using the water‐in‐oil microemulsion method. The ECL results revealed that Ru(bpy)32+ doped in silica nanoparticles retained its original photo‐ and electrochemical properties. The ECL intensity was found to be proportional to methamphetamine concentration over the range from 1.0 × 10?7 to 1.0 × 10?5 mol L?1, and the detection limit was found to be 2.6 × 10?8 mol L?1. The proposed ECL approach was used to analyze the methamphetamine content in drugs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
An electrochemical biosensor for the determination of lysine to be used for rapid evaluation of food quality has been developed. Platinum electrodes have been coated by electropolymerisation with 1,2-diaminobenzene (1.2-DAB) using cyclic voltammetry. The reduction in the oxidation of interferents compared with the bare platinum electrode was 100% for ascorbic acid, 99% for acetaminophen and 99% for cysteine. The enzyme L-lysine--oxidase was then immobilised onto the polymer layer by passive adsorption and a calibration curve for lysine constructed. This gave a linear range of 1×10−5 mol/l to 1×10−3 mol/l and a limit of detection of 2×10−7 mol/l.  相似文献   

5.
A highly hydrophobic and non-toxic colloidal silica nanoparticle/polyvinyl butyral sol–gel composite membrane was prepared on a platinum wire electrode. With diphtheria-toxoid (D-Ag) as a model antigen and encapsulation of diphtheria antibody (D-Ab) in the composite architecture, this membrane could be used for reagentless electrochemical immunoassay. It displayed a porous and homogeneous composite architecture without the aggregation of the immobilized protein molecules. The formation of immunoconjugate by a simple one-step immunoreaction between D-Ag in sample solution and the immobilized D-Ab introduced the change in the potential. Under optimal conditions, the D-Ag analyte could be determined in the linear ranges from 10 to 800 ng ml−1 with a relatively low detection limit of 2.3 ng ml−1 at 3δ. The D-Ag immunosensor exhibited good precision, high sensitivity, acceptable stability, accuracy, and reproducibility. This composite membrane could be used efficiently for the entrapment of different biomarkers and clinical applications.  相似文献   

6.
A mediator-free amperometric hydrogen peroxide biosensor was prepared by immobilizing horseradish peroxidase (HRP) enzyme on colloidal Au modified platinum (Pt) wire electrode, which was modified by poly 2,6-pyridinediamine (pPA). The modified process was characterized by electrochemical impedance spectroscopy (EIS), and the electrochemical characteristics of the biosensor were studied by cyclic voltammetry, linear sweep voltammetry and chronoamperometry. The biosensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator, the linear range was 4.2 × 10−7–1.5 × 10−3 mol/L (r = 0.9977), with a detection limit of 1.4 × 10−7 mol/L. Moreover, the performance and factors influencing the resulted biosensor were studied in detail. The studied biosensor exhibited permselectivity, good stability and good fabrication reproducibility.  相似文献   

7.
A novel electrochemical method for the detection of bioaffinity interactions based on a gold-nanoparticles sensing platform and on the usage of stripping voltammetry technique was developed. The oxidation of gold surface (resulted in gold oxide formation) upon polarization served as a basis for analytical response. As a model, thrombin-thrombin binding aptamer couple was chosen. The aptamer was immobilized on a screen-printed electrode modified with gold-nanoparticles by avidin-biotin technology. Cathodic peak area was found proportional to thrombin quantity specifically adsorbed onto electrode surface. Sigmoid calibration curve as is typical for immunoassay was obtained, with thrombin detection limit of 10(-9)M. Linear range corresponds from 10(-8) to 10(-5)M thrombin concentration or 2 x 10(-14) to 2 x 10(-11)mol/electrode (R=0.996). Binding of thrombin to an aptamer has also been detected using the ferricyanide/ferrocyanide redox couple as electrochemical indicator.  相似文献   

8.
The electrical circuit of an infrared photodiode electrode (IPE) was used in the simultaneous assay of copper and cadmium ions. The electrode's cyclic voltammetry (CV), chronoamperometry and square‐wave (SW) stripping voltammetric optimum conditions were examined. Results for 0–160 mg L?1 and 50–400 μg L?1 SW Cu(II) Cd(II), the relative standard deviation of 0.158 Cu(II), 0.077 Cd(II) (n = 15) using 20.0 mg L?1 have been obtained at optimum conditions. The low detection limit (S/N) was attained to be at 14.71 μg L?1(2.31 × 10?7 mol L?1) Cu(II) and 18.42 μg L?1(1.63 × 10?7 mol L?1) Cd(II). The handmade electrode was implanted deep in the muscle of live fish and interfaced with an electrochemical workstation. Real‐time analytical application was performed on the online assay of living tissue as the specimen was moving. The methods are deemed useful in interfaced assay for physiological control, nanodiode fabrication, and in the production of laboratory on a biochip. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:256–262, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20287  相似文献   

9.
A novel method was developed for the determination of levamisole by electrochemiluminescence. The method was based on electrochemiluminescence signal enhancement produced by Ru(bpy)32+, which reacted with the tertiary amine group of levamisole on a platinum electrode in 12 mmol/L borate buffer (pH 9). A linear relationship between the luminous intensity and concentration of levamisole in the range 0–1 × 10–7 mol/L was obtained and the detection limit was 1.76 × 10–11 mol/L. The method is sensitive, selective, simple and convenient. The method has been successfully applied to the analysis of levamisole in serum. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A highly sensitive electrochemical assay of the enzymatic activities of aqueous samples of lactate dehydrogenase, alcohol dehydrogenase, and malate dehydrogenase has been developed using an improved amperometric determination of NADH concentration in the test solution. An anode current sensitivity of 750 μA/mmol of NADH was obtained with a platinum-mesh electrode in an H cell modified to permit vigorous stirring of the anolyte. Fouling of the platinum anode was significantly decreased by working at a pH ≥ 8.1. The rate of increase in net anode current in substrate solutions containing as little as 2 × 10−3 unit of enzyme/ml correlated well with the rate of change in absorbance at 340 nm for each sample. The reproducibility of the assay of enzyme activity was about ± 10%.  相似文献   

11.
The interaction between the natural polyphenol resveratrol and human serum albumin (HSA), the most abundant transport protein in plasma, has been studied in the absence and in the presence of up to six molecules of stearic acids (SA) pre-complexed with the protein. The study has been carried out by using the intrinsic fluorescence of both HSA and resveratrol. Protein and polyphenol fluorescence data indicate that resveratrol binds to HSA with an association constant k a ?=?(1.10?±?0.14)?×?105?M?1 and (1.09?±?0.02)?×?105?M?1, respectively, whereas Job plot evidences the formation of an equimolar protein/drug complex. Low SA content associated with HSA does not affect significantly the structural conformation of the protein and its interaction with resveratrol, whereas high SA content induces conformational changes in the protein, and reduces resveratrol binding affinity. The photostability of resveratrol in the different samples changes in the order: buffer <?(high [SA]/HSA)?<?HSA?<?(low [SA]/HSA). The results on (SA/HSA)-resveratrol samples highlight the ability of the protein to bind hydrophobic and amphiphilic ligands and to protect from degradation an important antioxidant molecule under biologically relevant conditions.  相似文献   

12.
Introduction – Honokiol and magnolol are the active components of Magnolia officinalis, which is a widely used traditional Chinese medicine. Their simultaneous analysis is, therefore, important for the quality control of the product. Objective – To establish a simple, sensitive and rapid electrochemical method for the simultaneous detection of honokiol and magnolol based on the remarkable enhancement effect of acetylene black nanoparticle (AB). Methodology – The AB‐modified electrode was prepared via solvent evaporation. The electrochemical response of honokiol and magnolol was investigated using cyclic voltammetry. The simultaneous detection was performed with differential pulse voltammetry. The method was validated in terms of linearity, sensitivity, precision and accuracy. Results – The linear range for honokiol is 0.5–300 µg/L, and the limit of detection (LOD) is 0.25 µg/L (9.4 × 10?10 mol/L). For magnolol, the linear range is 10–250 µg/L, and the LOD is 5 µg/L (1.88 × 10?8 mol/L). Conclusion – The new method was successfully used to determine honokiol and magnolol in a traditional Chinese medicine called Ageratum liquid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A direct electrochemical immunoassay system based on the immobilization of α-1-fetoprotein antibody (anti-AFP), as a model system, on the surface of core-shell Fe2O3/Au magnetic nanoparticles (MNP) has been demonstrated. To fabricate such an assay system, anti-AFP was initially covalently immobilized on to the surface of core-shell Fe2O3/Au MNP. Anti-AFP-modified MNP (bio-nanoparticles) were then attached to the surface of carbon paste electrode with the aid of a permanent magnet. The performance and factors influencing the performance of the resulting immunosensor were studied. α-1-Fetoprotein antigen was directly determined by the change in current or potential before and after the antigen–antibody reaction versus saturated calomel electrode. The electrochemical immunoassay system reached 95% of steady-state potential within 2 min and had a sensitivity of 25.8 mV. The linear range for AFP determination was from 1 to 80 ng AFP ml−1 with a detection limit of 0.5 ng AFP ml−1. Moreover, the direct electrochemical immunoassay system, based on a functional MNP, can be developed further for DNA sensor and enzyme biosensor. Revisions requested 2 November 2005; Revisions received 17 January 2006  相似文献   

14.
15.
In the present study, a sensitive and competitive chemiluminescence immunoassay (CLIA) was developed in order to detect human serum albumin (HSA) in urine specimen. The method utilizes a home-made monoclonal anti-albumin antibody conjugated to horseradish peroxidase enzyme (mAb-HRP). Sensitivity, specificity and linearity of the assay were evaluated. According to the results, the proper concentration of HSA and mAb-HRP conjugates was 800?ng/100?μl and 1:200 respectively. In optimal conditions, this method could detect HSA in a high linear range of 10–200?μg?ml?1 with the low detection limit of 0.025?μg?ml?1. No evidence of interference with presence of probable substances in the urine samples indicated its high specificity and selectivity. Moreover, high reproducibility as well as high sensitivity and specificity of the test were confirmed using diabetic and non-diabetic samples. Significant concordance was observed between CLIA and immunoturbidimetry assay regarding detection of HSA. The results of the present study can be considered in accordance with the current demands such as reliability, accuracy, convenience and high speed of performance for a precise protein detection method. Furthermore, it may be regarded as a more rapid, simpler and cheaper alternative compared to other sophisticated assays.  相似文献   

16.
A flow-type enzyme immunosensor was prepared for the electrochemical determination of human serum albumin (HSA). The immunosensor was constructed from the immobilized antibody (anti-HSA IgG) reactor and an oxygen electrode. The immunochemical reaction of catalase-labelled antibody with HSA was completed with 30 min. After the immunochemical reaction, hydrogen peroxide solution was injected into the system and a peak current was obtained within 2 min. A linear relationship was observed between the current increase and the logarithm of HSA concentration in the range 10−8-10−6 g ml−1. The minimum measurable concentration was 10−8 g ml−1. The current increase was reproducible with 10% of the relative errors when a sample solution containing 10−7 g ml−1 of HSA was used. The minimum measurable concentration increased to 10−9 g ml−1 when hydrogen peroxide was recycled for 5 min in the reactor system. The immobilized antibody reactor could be reused. HSA in human serum was determined by the system proposed.  相似文献   

17.
A highly sensitive chemiluminescent assay for NAD(P)H have been developed. The principle of the method is as follows; NAD(P)H reduces molecular oxygen to superoxide anion (O) and hydrogen peroxide (H2O2) in the presence of 1-methoxy-5-methylphenazinium methyl sulphate (1-MPMS) as electron mediator. The produced O and H2O2 can be measured by chemiluminescent reaction using isoluminol (IL) and microperoxidase (m-POD). A linear relationship between chemiluminescence intensity and NAD(P)H concentration (log/log) was obtained ranged from 10?9 mol/I to 10?5 mol/I. This chemiluminescent reaction has been coupled to the assay of glucose-6-phosphate dehydrogenase (G6PDH), β-D -galactosidase (β-Gal) and alkaline phosphatase (ALP). The detection limits of G6PDH, β-Gal and ALP were 10?18 mol, 10?20 mol and 10?18 mol per assay, respectively. The chemiluminescent assay of these enzymes applied to chemiluminescent enzyme immunoassay for 17α-hydroxy-progesterone and DNA hybridization assay using these enzymes as label.  相似文献   

18.
A new simple, sensitive liposome immunosensor (LIS) has been developed by combining the advantages of spin membrane immunoassay (SMIA) and enzyme immunosensor (EIS). The LIS system is composed of an oxygen electrode and sensitized liposomes. It records liposome lysis induced by specific anti-theophylline antibodies and complement which is monitored by the release of entrapped enzymes instead of spin labeles. A sensitive detection was performed because of the amplification of antigen-antibody reaction by liposome lysis and enzymatic reaction. The method offers a simple and sensitive quantitative detection of theophylline down to 4 × 10?9 M (0.7 ng/ml).  相似文献   

19.
A novel potentiometry immunoassay with amplified sensitivity has been developed for the detection of diphtheria antigen (Diph) via immobilizing diphtheria antibody (anti-Diph) on a platinum electrode based on Nafion, colloidal Ag (Ag), and polyvinyl butyral (PVB) as matrixes in this study. The modified procedure was further characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The influence and factors influencing the performance of resulting immunosensor were studied in detail. The resulting immunosensor exhibited sigmoid curve with log Diph concentrations, high sensitivity (51.4 mV/decade), wide linear range from 8 to 800 ng ml(-1) with a detection limit of 1.5 ng ml(-1), rapid potentiometric response (<3 min) and long-term stability (>6 months). Analytical results of clinical samples show that the developed immunoassay is comparable with the enzyme-linked immunosorbent assays (ELISAs) method, implying a promising alternative approach for detecting diphtheria antigen in the clinical diagnosis.  相似文献   

20.
A hydrogen peroxide permselective membrane with asymmetric structure was prepared and d-glucose oxidase (EC 1.1.3.4) was immobilized onto the porous layer. The activity of the immobilized d-glucose oxidase membrane was 0.34 units cm?2 and the activity yield was 6.8% of that of the native enzyme. Optimum pH, optimum temperature, pH stability and temperature stability were found to be pH 5.0, 30–40°C, pH 4.0–7.0 and below 55°C, respectively. The apparent Michaelis constant of the immobilized d-glucose oxidase membrane was 1.6 × 10?3 mol l?1 and that of free enzyme was 4.8 × 10?2 mol l?1. An enzyme electrode was constructed by combination of a hydrogen peroxide electrode with the immobilized d-glucose oxidase membrane. The enzyme electrode responded linearly to d-glucose over the concentration 0–1000 mg dl?1 within 10 s. When the enzyme electrode was applied to the determination of d-glucose in human serum, within day precision (CV) was 1.29% for d-glucose concentration with a mean value of 106.8 mg dl?1. The correlation coefficient between the enzyme electrode method and the conventional colorimetric method using a free enzyme was 0.984. The immobilized d-glucose oxidase membrane was sufficiently stable to perform 1000 assays (2 to 4 weeks operation) for the determination of d-glucose in human whole blood. The dried membrane retained 77% of its initial activity after storage at 4°C for 16 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号